

Boundary Obstructed Topological Phases

Raquel Queiroz

Boundary obstructed topological phases Khalaf, Benalcazar, Hughes, RQ 1908.00011 Partial lattice defects in higher order topological insulators RQ, Fulga, Avraham, Beidenkopf, Cano 1809.03518

Different measures of topology

Different measures of topology

Different measures of topology

Khalaf, Benalcazar, Hughes and RQ, 1908.00011

Violates Bulk-boundary correspondence

4 / 38

An example of a bulk obstructed atomic limit SSH chain with inversion

Obstructed: A transformation that can't be done while preserving the bulkgap

Simplest example: 1D chain with inversion symmetry. 1 electron per unit cell

Dashed red lines: inversion centers

Symmetry: $I \times T^1$

Physical response: quantized polarization dipole moment

Topological invariant: Distinct symmetry representations ρ^k protected by bulk gap closing (Frank's talk!)

Open boundaries. Symmetry: *I* Topological invariant?

Anomaly: can't fill the states and preserve inversion!

Topological invariant: is the inversion center filled?

Correspondence: bulk topology - boundary anomaly - physical response

An example of a boundary obstructed atomic limit Quadrupole insulator

2D Quadrupole insulator (Double mirror)

Benalcazar, Bernevig and Hughes, Science 2017

Corner modes and quantized quadrupole moment no bulk gap closing transition? How can it be?

2D "Quadrupole insulator" Benalcazar, Bernevig and Hughes, Science 2017

Two electrons per unit cell with M_x and M_y that form a **2D representation**

Charge centers have free movement along the mirror invariant lines

no anomaly can be deformed into each other filling anomaly:2 states shared by 4 sitesCorner modes

no anomaly can be deformed into each other filling anomaly:2 states shared by 4 sitesCorner modes

no anomaly can be deformed into each other filling anomaly: 2 states shared by 4 sites Corner modes Quantized Quadrupole

Boundary ambiguity:

Phase with corner charge depends on where the corner sits in the unit cell

C

C

Definition of BOTPs

- 1. Bulk phase
- 2. Adiabatically equivalent with periodic boundary conditions.
- 3. We can choose a boundary that makes them adiabatically inequivalent
- 4. Distinguished by globally robust boundary modes

Fails to be captured by known classification schemes with PBC:

 \rightarrow Symmetry indicators (Watanabe et.al.)

 \rightarrow Topological Quantum Chemistry (Bradlyn et.al.)

Captured by physical quantities defined in lower dimensions:

- \rightarrow Surface spectrum
- \rightarrow Wannier spectrum
- \rightarrow Entanglement spectrum

How to diagnose this topology? Use the Wannier spectrum

Wannier spectrum \sim surface spectrum. Fidkowski 2011

Spectral flow

Not Wannier representable No band representation

Absolute Topology 🧹

- 1) Described by a band representation $\rho^{\mathbf{k}}$, is Wannier localisable in $G \times T^d$
- 2) Breaking some translation symmetry along **b**, $\rho^{\mathbf{k}}$ is decomposed into Wannier bands, described by Wannier band representations

$$w^{\boldsymbol{b},\boldsymbol{k}_{\perp}} = \rho^{\boldsymbol{k}} \downarrow (G^{\boldsymbol{b}} \times T^{d-1}).$$
 with $w^{\boldsymbol{b},\boldsymbol{k}} = \bigoplus_{a} w_{a}^{\boldsymbol{b},\boldsymbol{k}}$

3) The decompositions are **topologically distinct** \rightarrow separated by gap closing

4) Lattice termination defines a Wannier Chemical potential μ_b

x

Wannier spectrum \sim surface spectrum. Fidkowski 2011

 ∂ Gap Closing \Rightarrow Wannier Gap Closing Wannier Gap Closing $\Rightarrow \partial$ Gap Closing Boundary ambiguity

5) Boundary introduces a topological distiction between regions characterized by distinct boundary modes: **Wannier chemical potential**

Types of boundary modes

Globally robust Protected by bulk symmetry TIs, Higher-order or Crystalline TIs Locally robust Boundary Not protected by symmetry States **Trivial** insulators (extrinsic HOTIs) New Globally robust Protected by boundary symmetry Boundary obstructed TIs

Khalaf, Benalcazar, Hughes and RQ, 1908.00011

An example with helical modes Dimerized weak topological insulator

Weak topological insulator

Stack of 2D TI

Protected by translation

Dimerized weak topological insulator

topological

Dimerized weak topological insulator

Bulk remains gapped! Band Rep A = Band Rep B $\Delta \sim \sqrt{m^2 + \delta^2}$

Dimerized weak topological insulator

Boundary gap closing at C_{2z} or M_z invariant points distinct with open boundaries

Domain wall

Topology is well defined once a boundary is introduced

translation defect in a boundary obstructed phase

RQ, Fulga, Avraham, Beidenkopf, Cano, 1809.03518

edge dislocation (step edge)

Ran and Vishwanath criteria:

WTI implies states at dislocations if $B \cdot M_{\nu} = \pi$ with

$$\mathsf{M}_{\nu} = \frac{1}{2}(\nu_1, \nu_2, \nu_3) \cdot \mathsf{G}$$

RQ, Fulga, Avraham, Beidenkopf, Cano, 1809.03518

edge dislocation (step edge)

RQ, Fulga, Avraham, Beidenkopf, Cano, 1809.03518

fractional Burgers vector

TI at stacking fault is the signature that the two dimerizations are topologically distinct

Robust bulk signature!

Partial dislocations and stacking faults

- \rightarrow Stacking faults can host robust topological insulators
- \rightarrow Common in crystallography
- \rightarrow Can pick up on boundary obstructions in seemingly trivial systems
- \rightarrow Relevant for other higher order topological insulators
- $\rightarrow\,$ Just the beginning

FIG. 1. Terrace Structure of Antimony. (a) Bilayer crys-

RQ, Fulga, Avraham, Beidenkopf, Cano, 1809.03518

Overview

- → Introduced boundary obstructed topological phases: Topology of bulk revealed given a certain boundary
- \rightarrow Violates bulk-boundary correspondence, generalize adiabatic theorem
- → Introduced Wannier band representations and Wannier chemical potential
- $\rightarrow\,$ Seen that the BBH model and the dimerized WTI are BOTPs
- \rightarrow Introduced topological stacking faults and partial dislocations

Thank you!