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Outline for my talk

Ultrafast Ferromagnetism
- Previous understanding:
- Ultrafast demagnetization takes place in 100-200 fs

- Introduction to extreme ultraviolet Magneto-optical Kerr Spectroscopy
- Element Specific Information
- 10fs bursts, very high time resolution

- New Understanding: Spin excitations within few femtoseconds!
- Ultrafast magnetic phase transition in Ferromagnetic Nickel
- Direct optical spin transfer between different elements in Co2MnGe

Zusin, D., Tengdin, P, et. al. PRB 97, 024433 (2018)
Tengdin, P. et. al. Sci. Adv. 4 : eaap9744 (2018)

You, W., Tengdin, P, et. al. PRL 121, 077204 (2018)
Tengdin, P. et al., Sci. Adv. in press (2019)

Hofherr, M., et al., Sci. Adv. in press (2019)



ﬁl@_A The puzzle of light-induced ultrafast demagnetization

Demagnetization by fs Laser " o

E Beaurepaire et. al, PRL, 76, 4250 (1996
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Coupled dynamics of spins/charge/photons: past work assumed that 5
energy flowed from charges, to spins, to lattice

Superdiffusive spin transport : Battiato et
al., PRL 105, 27203 (2010)

Bigot et al, Nature Physics 5, 515 (2009)
Koopmans et al., Nature Mater. 9, 259 (2010)




EUV (M-edges)

High harmonic generation:
ideal for probing ultrafast spin dynamics

Photon Energy

UNIQUE ADVANTAGES Driving

* Element selective laser

* Multiple elements simultaneously

* <<1 OfS tlme reSOIUthn, no Jltter Rundquist et al, Science 280, 1412 (1998)

° : Ch t al., PRL 105, 173901 (2010
Span entire M edges, L edges Pogrr:liitc?hevet al, Science 33(6, 128)7(2012)
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Experimental setup
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Kerr Effect
p-polarized reflectivity
depends on the
magnetic state

IR Pump
(780 nm)

EUV Probe
(17- 29 nm)

PRL 103, 257402 (2009)
PRX 2, 011005 (2012)

PNAS 109, 4792 (2012)

Nat. Commun. 3, 1037 (2012)
PRL 110, 197201 (2013)
PRB 94, 220408(R) (2016)
PRB 97, 024433 (2018)

Sci Adv 4:eaap9744 (2018)
PRL 121, 077204 (2018)



Time-Resolved Asymmetry

Direct manipulation of spins:

ultrafast spin excitation in two different materials

laser

pulse
4 N\ )
20 fs
200 fs
Half-metal Heusler
Ferromagnetic Nickel ) {  Alloy: CoMnGe! y




Previous Work: Critical Behavior in Nickel 7

Probed spin dynamics in Ni / 20 fs
using tabletop EUV high
harmonics

- (ARPES) to probe exchange
splitting, electron temperature

- (MOKE) to probe magnetic order,
reflectivity

Observed very surprising spin
dynamics

- Light excitation couples to spin
system within 20fs after the pump
pulse (new timescale for field)
(ARPES)

- Initial super-excited state dictates
future dynamics of the material for the

full range of pump fluences (MOKE)
Tengdin, et. al. Sci. Adv. 2018;4 : eaap9744



ﬂjﬂ_A Light induced spin transfer: Half metallic System °

Electron wavefunction
EUV pulse ¢

4R puls&® “"”j'

N\

time
delay

exchange exchange
energy energy

Co both spin Mn only majority
excitations spin excitation

...
...
....
L A

Co2MnGe

« Half metallic: one spin state conducting, the other insulating
« Half-metal gap in Mn is bigger than in Co
» Expect to see slower dynamics due to reduced scattering processes
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Ultrafast transfer of magnetization between elemental 9

sublattices
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Element resolved density of states predicts 10
mechanism for all-optical spin transfer

« Full metal phase: both spin states of
both elements excited
« Half metal phase: Only minority
carriers excited in Mn while both carriers
Half Metal are excited in Co

O tt 10O

Full Metal Co- minority
spin excitation

Half-metal Phase Full Metal Phase

Co Co, Mn
Mn or Ge and Ge
(random) (random)

Tengdin, P. et. al.Sci. Adv. In press. (2019)



Microscopic process for direct optical transfer of spin 11

Initial state W

Final state W

Microscopic Process

1. Preferential absorption of a single spin state in the valence band of Mn
(wavefunction has primarily Mn character, electrons more localized)

2. Direct optical transfer via the conduction band (wavefunction has primarily Co
character, electrons more itinerant)

Tengdin, P. et. al. Sci. Adv. In press. (2019)



Optical spin transfer between elemental sublattices in 12
half-metallic Co2MnGe on ultrafast 1-55 fs timescales

« Transient enhancement of Co magnetization within the duration of
the pump pulse

— Multiple measurements confirm existence of the enhancement occurs only
during pump pulse duration

— Enhancement possible only for the half-metallic phase
— Direct measurement of nearly-instantaneous spin manipulation



M/Mo

Unlike previous ultrafast measurements: behavior is not
captured by LLG modelling!

Experiments
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Informing and changing theory: much faster spin
manipulation, now we see what is happening

\_

~5-40 fs )

Superdiffusive spin transport

Theory: PRL 105, 027203 (2010)

4 <20 fs Y <few-fs

Spin flip scattering

Theory: Nature Materials 9, 259 (2010) Theory: Nano Lett. 18, 1842 (2018)

Ultrafast light-induced

spin transfer

Our work: PRL 121, 077204 (2018) Our work: Tengdin et al., in press (2019)

Our work: PRL 110, 197201 (2013) /

Tengdin, P. et al. Sci. Adv. 4, 9744 (2018 i
\Jeng ( j)@ofherr et al., in press (2019)
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FM/NM layers

ARPES/MOKE
Measures:
FM Nickel

Co2MnGe Alloy
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LLG Formalism

We consider classical atomic magnetic moments {m;} = m;{e;} at site i. The dynamics
of{m;} is governed by the atomistic Landau-Lifshitz-Gilbert (aLLG) equation
(Antropov)

E AT

Where v is the gyromagnetic ratio and B; = is the effective precession field related

am; ( a ami)

0H
mg

to the spin-Hamiltonian, employing a Heisenberg model where -

H = _z]i,jmi - m; —ﬂBBzmi
L i

Here, the magnetic moments at site / and j are coupled by the exchange parameter Jj.
The values of the Heisenberg exchange parameters were obtained from first
principles electronic structure theory. In the expression above, B is the external
magnetic field. From the fluctuation-dissipation theorem, thermal fluctuations enter by
a stochastic field, b;, that fulfills white noise properties, such as (b;) = 0 and

(b (t)by (t")) = D6;;6,,6(t — t"), with the fluctuation amplitude D = 2ak,T/ym . The
dissipation part enters the equation of motion via a viscous damping part scaled by
the Gilbert damping constant a.

V. Antropov et al. Phys. Rev. B 54, 1019 (1996).



