Magnetic Weyl Semimetals

Claudia Felser

the concept

Liu et al. Nat. Mat. (2016)

the materials

explorative search for new materials & predictive design

• high quality single crystal growth

• epitaxial growth of ultrathin films and heterostructures

• 2D materials and micro/nano structures

the materials

Weyl semimetals

Breaking time reversal symmetry

Weyl semimetals

the Heusler family

Graf, Felser, Parkin, IEEE TRANSACTIONS ON MAGNETICS 47 (2011) 367 Graf, Felser, Parkin, Progress in Solid State Chemistry Chemistry 39 (2011) 1

from semiconductors to half metals

tuning exchange

Galanakis et al., PRB 66, 012406 (2002)

Balke *et al.* Solid State Com. **150** (2010) 529 Kübler *et al.*, Phys. Rev. B **76** (2007) 024414

Heusler and Weyl

Breaking symmetry

Inversion symmetry (Strain)

Breaking time reversal symmetry

. Magnetic field

Co₂TiSn

$$Co_2 TiSi: 2 \times 9 + 4 + 4 = 26$$
 Ms = $2\mu_B$

- Dirac points at high symmetry
- · Weyl points at low symmetry
- All crossings in ferromagnets: Weyl points

Binghai Yan Claudia Felser, Annual Review in Condensed Matter 8 (2017) 337 Zhijun Wang, et al., arXiv:1603.00479 Guoqing Chang et al., arXiv:1603.01255

Giant AHE in Co₂MnAl

 $\sigma_{xy} = 1800 \text{ S/cm}$ calc. $\sigma_{xy} \approx 2000 \text{ S/cm}$ meas.

 $\sigma_{xy}^{A}(\mu) = ie^{2} \left(\frac{1}{2\pi}\right)^{3} \int_{k} dk \sum_{E(n,k) < \mu} f(n,k,\mu) \Omega_{n,xy}(k),$

N_V	<i>a</i> (nm)	M ^{exp}	M^{calc}	σ_{xy}	P (%)
26	0.5779	1.92	1.953	66	65
27	0.5727	1.7	2.998	438	100
27	0.5960	1.21	1.778	-1489	35
28	0.5749	4.04	4.045	1800	75
28	0.6022		4.066	1500	94
28	0.4509 (1.3477)		6.66	1108	91
29	0.5984	5.08	5.00	118	82
29	0.5645	4.90	4.98	228	100
	N _V 26 27 27 28 28 28 28 29 29	N_V a (nm)26 0.5779 27 0.5727 27 0.5960 28 0.5749 28 0.6022 28 0.4509 (1.3477)29 0.5984 29 0.5645	N_V a (nm) M^{exp} 260.57791.92270.57271.7270.59601.21280.57494.04280.602228280.4509 (1.3477)29290.59845.08290.56454.90	N_V a (nm) M^{exp} M^{calc} 260.57791.921.953270.57271.72.998270.59601.211.778280.57494.044.045280.60224.066280.4509 (1.3477)6.66290.59845.085.00290.56454.904.98	N_V a (nm) M^{exp} M^{calc} σ_{xy} 260.57791.921.95366270.57271.72.998438270.59601.211.778-1489280.57494.044.0451800280.60224.0661500280.4509 (1.3477)6.661108290.59845.085.00118290.56454.904.98228

 $\boldsymbol{\rho}_{xy}^{M} = \left(\alpha \rho_{xx} + \beta \rho_{xx}^{2}\right) \boldsymbol{M}. \boldsymbol{???}$

Kübler, Felser, PRB 85 (2012) 012405 Vidal et al Appl.Phys.Lett. 99 (2011) 132509 Kübler, Felser, EPL 114 (2016) 47005.

Giant AHE in Co₂MnAl

Co₂MnGa

PHYSICAL REVIEW B 85, 012405 (2012)

Berry curvature and the anomalous Hall effect in Heusler compounds

Jürgen Kübler^{1,*} and Claudia Felser²

$$\sigma_{xy}^{A}(\mu) = ie^{2} \left(\frac{1}{2\pi}\right)^{3} \int_{k} dk \sum_{E(n,k) < \mu} f(n,k,\mu) \Omega_{n,xy}(k),$$

Kübler, Felser, PRB 85 (2012) 012405 Vidal et al., Appl. Phys. Lett. 99 (2011) 132509

Kübler, Felser, EPL 114 (2016) 47005.

Berry curvature design

Berry curvature design

- giant spin Hall
- giant anomalous Hall
- giant topological Hall
- giant anomalous Nernst

Nernst effect

J. Noky et al., Phys. Rev. B 98, 241106(R) (2018)

Satya N. Guin, et al., NPG Asia Mater. 11, 16 (2019), arXiv:1806.06753 Sakain et al. Nature Physics 2018

Manna et al., Phys. Rev. X 8 (2018) 041045, arXiv:1712.10174

Manna et al., Phys. Rev. X 8 (2018) 041045, arXiv:1712.10174

Co₂MnGa – ferromagnetic nodal line

Series of ARPES cuts through the candidate line node

Belopolski, et al., Science accepted (2019) preprint arXiv:1712.09992

Manna et al., Phys. Rev. X 8 (2018) 041045, arXiv:1712.10174

no inversion symmetry topology !

playing with symmetry: from Weyl to spingapless semiconductor

Manna et al., Phys. Rev. X 8 (2018) 041045, arXiv:1712.10174

semiconductor

Manna et al., Phys. Rev. X 8 (2018) 041045, arXiv:1712.10174 Manna et al., Nature Review Materials, 3 (2018) 244 arXiv:1802.02838v1

high through put

Manna et al., Nature Materials Review, 2018,

December 2014

For the planar cases the AHC is connected with Weyl points in the energy- band structure.

Chen, Niu, and MacDonald, Phys. Rev. Lett., 112 (2014) 017205.

The anomalous Hall conductivity in an antiferromagnetic metal is zero

LETTER

Mn₃Ge

Mn₃Sn

doi:10.1038/nature15723

Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature

Nayak et al. arXiv:1511.03128, Science Advances 2 (2016) e1501870

Kiyohara, Nakatsuji, preprint: arXiv:1511.04619

Nakatsuji, Kiyohara, & Higo, Nature, doi:10.1038/nature15723

Nernst effect in Mn₃Sn

Kagome lattice

doi:10.1038/nature25987

LETTER

Massive Dirac fermions in a ferromagnetic kagome metal

Mn,Fe,Co

Kagome lattice

0 Oe

 $Co_3Sn_2S_2$

doi:10.1038/nature25983

LETTER

Looking for Weyl fermions on a ferromagnetic Kagomé lattice with out of plane magnetisation.

Enke Liu, et al. Nature Physics 14 (2018) 1125 , preprint arXiv:1712.06722

Nature, 2018, doi:10.1038/nature25987

Weyl and Berry

Liu, et al. Nature Physics 14 (2018) 1125 , preprint arXiv:1712.06722

Weyl and Berry

STM and ARPES confirms Weyl and Fermiarcs

Morali et al., Science accepted , preprint arXiv:1903.00509

Weyl and Berry

STM and ARPES confirms Weyl and Fermiarcs

Liu, et al. Nature Physics 14 (2018) 1125, Guin, et al. Adv. Mater. 2019, 1806622, arXiv:1712.06722, arXiv:1807.07843, arXiv:1806.06753

1.4

Berry curvature design

а

 $\sigma_{\rm H}^{\rm A}/\sigma$ (%)

20

0

0

- giant anomalous Hall
- giant anomalous Nernst •

 $\sigma_{\rm L}^{\rm A}$ (10³ Ω^{-1} cm⁻¹)

Liu, et al. Nature Physics 14 (2018) 1125, Guin, et al. Adv. Mater. 2019, 1806622, arXiv:1712.06722, arXiv:1807.07843, arXiv:1806.06753

Co₂MnGa

Berry curvature design

- giant anomalous Hall
- Co₃Sn₂S₂ giant anomalous Nernst • Mn₃Sn

Guin, et al. Adv. Mater. 2019, 1806622, arXiv:1712.06722, arXiv:1807.07843, arXiv:1806.06753

Guin, et al. Adv. Mater. 2019, 1806622, arXiv:1712.06722, arXiv:1807.07843, arXiv:1806.06753

quantum devices

- Towards QAHE in MBE grown thin films.
- Magnetic Weyl for QAH effect in 2D

Qiunan Xu, Enke Liu, Wujun Shi, Lukas Muechler, Claudia Felser, Yan Sun, preprint arXiv:1712.08915

quantum anomalous Hall

Sean Howard, Lin Jiao, Zhenyu Wang, Chandra Shekhar, Claudia Felser, Taylor Hughes3, Vidya Madhavan, submitted

vision

new physics

- Berry phase design of materials for energy conversion and Hall sensors
- Quantum anomalous Hall effect at room temperature
- Berry curvature design in real and reciprocal space
- devices made of thin films and crystals

- potential applications

- spintronics
 - Racetrack memory
 - Majorana fermions
 - Spin Hall based MRAM
 - antiferromagnetic Spintronics
 - Spincaloritronics
- quantum computing
- energy conversion

thank you for your attention

Yulin Chen Stuart Parkin and teams

