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Definition of terms

• Neuromorphic computing
– [Narrow sense]

Computing using analog circuits that mimic dynamics of nervous system
Proc. IEEE, 78, 1629 (1990)

– [Broad sense]

Computing inspired by neuro-biological architecture

• Brain-inspired computing
– Computing inspired by brain (no strict definition) 

• Artificial intelligence
– [Narrow sense]

Machines with software emulating mechanism of brain

– [Broad sense]

Intelligent machines that work and react like humans
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Today’s definition

Today’s definition



Motivation of neuromorphic computing

1. Engineering aspect
• try to make computer efficient like brain 

(capable of executing complex tasks at low power level)

2. Brain-scientific aspect
• try to understand information processing in brain

3. Biomedical-engineering aspect
• try to communicate with brain 

(e.g., suppression of brain disorder)
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Today’s standpoint
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How different? 

Classical computer Brain

GHz kHz

Digital Analog

Rigid hierarchy disorder

Clock driven
Synchronous

Event driven
Asynchronous

Sequential Parallel

Logic/memory separation
(von Neumann architecture)

In-memory computing

Minimum redundancy
Highly redundant
(105 neurons die per day)

Good at well-defined problems,  
iterative tasks, …

Good at ill-posed problems, 
cognitive tasks, …
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Fundamental units – neuron and synapse
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Dendrites

Spikes

Axon

Δτ

Synapse
Neuron

Neuron >1011

… Function of processor
Synapse >1015

… Function of memory 

 Needs to reproduce by some means



Fundamental units – neuron and synapse
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Statically … Product-sum operation

Dendrites

Spikes

Axon

Δτ

Synapse
Neuron

Basis for Deep Neural Network (DNN), Convolutional Neural Network (CNN)
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Fundamental units – neuron and synapse
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Dynamically … LIF and STDP
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Spike-timing-dependent plasticity (STDP)

• Multilevel
• Plastic

Basis for Spiking Neural Network (SNN)
… event-driven asynchronous operation



Model

• Deep neural network

• Recurrent neural network
– Reservoir computing

• Hopfield network

• Stochastic neural network 
(Boltzmann machine)

• Spiking neural network

• …

Hardware

• Conventional (von Neumann) 
computer

• CMOS-based sophisticated 
hardware

• CMOS + nonvolatile memory

• Synapse-like and/or neuron-
like emerging devices

• …

10

Options for neuromorphic computing



Road to neuromorphic computing (1)

Many product-sum operations

 High compatibility with conventional hardware

 Inefficient in terms of power consumption
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Deep Neural Network (DNN) + Conventional hardware … AI
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History of AlphaGo

 Power consumption has been drastically improved by 
employing Tensor Processing Unit (TPU).
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https://gigazine.net/news/20171020-alphago-zero/*TDP: Thermal Design Power

~ kW



Road to neuromorphic computing (2)

• Specialized for product-sum 
operation
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Sophisticated architecture with CMOS (ASIC*)

Taken from IEEE Spectrum

Tensor Processing Unit (TPU)
by Google

Loihi
by Intel

TrueNorth
by IBM

BrainScaleS
by Heidelberg

Other examples

*ASIC: Application Specific Integrated Circuit



Road to neuromorphic computing (3)
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Sophisticated architecture + nonvolatile MTJ

Tensor Processing Unit (TPU)
by Google

AI chip with MTJ*
by Tohoku Univ. (T. Endoh et al.)

700 MHz 20 MHz

28 – 40 W 600 mW

40～57 mW/MHz 30 mW/MHz

* Commercially-available AI chips (2018) produced by Gyrfalcon Technology use TSMC’s eMRAM

Taken from IEEE Spectrum



Scaling of machine complexity vs task complexity
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G. Cauwenberghs, PNAS 110, 15512 (2013)

 As task complexity increases, more brain-like models 
with brain-like elements are promising.



Neural network models
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Training

Reservoir computingHopfield model

J. J. Hopfield, PNAS 79, 2554 (1982). H. Jaeger & H. Haas, Science, 304, 78 (2004)

Artificial synapse with analog 
memory functionality is 
required.

Artificial neuron with non-
linearity and short-term memory 
functionality is required.

 Emerging devices



Road to neuromorphic computing (4)
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Sophisticated architecture with emerging devices (static)

M. Prezioso et al., Nature 521, 61 (2015).

Metal-oxide memristor (TiO2-x)

Pattern classification using single-layer perceptron

Other examples

Phase-change
Hopfield network
by IBM (IEDM2013)

Ferroelectric
Hopfield network
by Panasonic
(VLSI2013)

Spintronics
Hopfield network
by Tohoku Univ.
(APEX2017)



Road to neuromorphic computing (5A)
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Sophisticated architecture with emerging devices (dynamic)

Si:Ag (memristor) 
(Jo et al., Nano Lett. 2010)

Ge2Sb2Te5

(Kazum et al., Nano Lett. 2012)

Mott Insulator 
(Stoliar et al., Adv. Func. Mater. 2017)

Floating-body MOSFET 
(Datta et al., Sci. Rep. 2017)

Neuron-like element Synapse-like element

Spintronics … Next talk by Aleksandr Kurenkov



Road to neuromorphic computing (5B)
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Sophisticated architecture with emerging devices (dynamic)

Reservoir computing

Water in a bucket
(C. Fernando & S. Sojakka 2003)

Memristor array
(C. Du et al. 2017)

Octopus
(K. Nakajima et al. 2013)

Example of spintronics … described later



Short summary

Status and prospect of neuromorphic computing

 Software-based approach with conventional hardware
(So-called AI)

– well established

– requires huge power

 Sophisticated hardware (so-called ASIC)

– can drastically reduce power consumption

 Sophisticated hardware + MTJ

– can further reduce power consumption

 Emerging devices (neuron-like, synapse-like)

– may have opportunities for highly-complex tasks

– researches on various material systems on going
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… what?

… any chance for spintronics?
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Features of spintronics

• High speed
(ns ~ sub ns for FM, sub ns ~ ps for AFM)

• High endurance (>1015)

• Scalable (< 10 nm)

• Nonvolatile (> 10 years)

• Low voltage (< 1 V)

• Can be formed between interconnect

• Analog/digital mixed

• Short-term memory

• Stochasticity

22

MRAM

Neuro-
morphic

• [Cons] Low magnetoresistance  needs to be helped by CMOS



Example 1) Analog memory functionality
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S. Fukami et al., Nature Mater. 15, 535 (2016).
Poster by G. Krishnaswamy, SF et al.

SOT device with AFM/FM

W. A. Borders, SF et al., Appl. Phys. Express 10, 013007 (2017).

 Controlling domain structure 
allows analog memory.

 36 analog SOT devices 
used as artificial synapse 
in Hopfield network.

Associative memory

Similar behavior:
- CuMnAs … P. Wadley et al., Science (2016); 

K. Olejnik et al., NCOMMS (2017).
- Mn2Au … S. Y. Bodnar et al., NCOMMS (2018);

M. Mainert et al., PRAppl (2018).
- NiO … X. Z. Chen et al., PRL (2018);

T. Moriyama et al., SciRep (2018).

Another example

Helicity-dependent optical switching in Co/Pt

Supervised perceptron leaning demonstrated
A. Chakravarty et al., APL (2019)

FM

AFM



Example 2) Short-term memory functionality

Also, …

 Synchronization functionality of STO is useful for pattern matching.
M. R. Pufall et al., IEEE J. Explor. Solid-State Comput. Dev. Cir. 1, 76 (2015).

 Skyrmion fabrics, spin wave in garnet, … can be used for reservoir layer.
D. Prychynenko et al., Phys. Rev. Appl. 9, 014034 (2018).

R. Nakane et al., IEEE Access 6, 4462 (2018).

24

J. Torrejon et al., Nature 547, 428 (2017) M. Romera et al., Nature 563, 230 (2018).

Spoken digit recognition Vowel recognition



Example 3) Stochasticity
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Population coding

A. Mizrahi et al., NCOMMS 9, 1533 (2018).

“w, i, n, r, u, m”
generated by 
superparamagnetic 
tunnel junction

Stochastic computing

Brownian motion of skyrmion to 
generate uncorrelated random bit

J. Zázvorka et al., NNANO 14, 658 (2019).

Probabilistic computing
… described later



Challenges and opportunities of spintronics 
(my thought)

• Spintronics is attractive in terms of rich attributes 
(analog, dynamics, stochastic, …) and controllability.

• Small-scale proof-of-concept demonstration has been 
going well.

• Large-scale performance demonstration compared 
with competing technologies will be demanded in 
future.

• Need to be conscious of integration into CMOS circuits.

• Need to find applications that are difficult for other 
technologies.
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Computational complexity
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Class P
Problems that can be solved by a 
deterministic Turing machine using a 
polynomial time.

Class NP
Problems where the validity of answer 
can be verified with polynomial time.

Class NP-Hard
Problems that are informally "at least as 
hard as the hardest problems in NP".

NP

P

NP-Hard

NP-Complete



Problem 1) Class P
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NP

P

NP-Hard

NP-Complete

Q. You will travel the cities below. 
How long does it take?

• Frankfurt
• Munch

• Roma

• Milano

• Paris

• Barcelona
• Madrid

• Marseille

• London
• Amsterdam

• Stockholm

• Warsaw

1. Frankfurt
2. Munich
3. Roma
4. Milano
5. Marseille
6. Barcelona
7. Madrid
8. Paris
9. London
10. Amsterdam
11. Stockholm
12. Warsaw
13. Frankfurt



Problem 2) Class NP-Hard

30

NP-Hard

NP • Frankfurt
• Munch

• Roma

• Milano

• Paris

• Barcelona
• Madrid

• Marseille

• London
• Amsterdam

• Stockholm

• Warsaw

• Munich
• Roma
• Milano
• Marseille
• Barcelona
• Madrid
• Paris
• London
• Amsterdam
• Stockholm
• Warsaw

NP-Complete

P

Q. You are at Frankfurt. You should 
visit the cities below once and return 
to Frankfurt. What’s the shortest 
route?

Traveling Salesman Problem
(Optimization problem)

30 cities  4.42x1030 patterns  1013 years !!! by high-performance computer
(Lifetime of sun … 109 years)



Integer factorization

• Belong to Class NP(-hard)
(controversial)

• Very difficult for classical 
computers
– State-of-the-art computer at 2007 

took 2.5 years to factorize 768 bit.
T. Kleinjung et al., Advances in Cryptology – CRYPTO 2010 p. 333 (2010)

• Applied to data encryption

• Known to be efficiently solved by 
quantum computer (Shor’s 
algorithm)

31

NP

P

NP-Hard

NP-Complete

35 = 5 x 7
161 = 23 x 7

Other examples in difficult-class problem:
- Calculation of wave function of molecules, weather forecast, …



Richard Feynman said …
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Physics of Computation Conference
at MIT

on May 6-8, 1981

“If you want to make a simulation 
of nature, you’d better make it 
quantum mechanical, …”

“…the other way to simulate a 
probabilistic nature is by a computer 
which itself is probabilistic, …”

“Simulating Physics with Computers”

“Simulating Physics with Computers”, International Journal of Theoretical Physics 21, 467-488 (1982).

Quantum computing

Probabilistic computing

https://www.nature.com/articles/d41586-019-02781-4

https://www.nature.com/articles/d41586-019-02781-4


Probabilistic computing – basic concept

The lowest energy state is most-frequently observed.
(The lowest energy state is observed at T 0   Annealing)

33

𝑃 𝐸, 𝑇 =
1

𝑍
exp −

𝐸 Γ

𝑘B𝑇
… Boltzmann distribution

Procedure of probabilistic computing
1. Defining energy (cost function) for the given problem.
2. Mapping to physical system with probabilistic nature.
3. Taking statistics of stochastic neurons.
4. You will obtain the answer as the state that had been 

observed most frequently.



Stochastic magnetic tunnel junction
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MRAM

“0” “1”

Probabilistic bit (p-bit)

“0” “1”

16 Mb.
VLSI2018

128 Mb.
IEDM2018

8 Mb.
IEDM2018

7 Mb.
ISSCC2019
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Spintronics p-bit
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Capping layer

CoFeB (tCoFeB)
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Stochastic neuron!

D = 50 nm, tCoFeB = 1.89 nm

K. Y.  Camsari et al., IEEE Elec. Dev. Lett. 38, 1767 (2007).



Used algorithm for integer factorization
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𝐸 = 𝑋𝑌 − 𝐹 2

ቊ
𝑋 = 1 + 2𝑥1 + 4𝑥2 + 8𝑥3 +⋯
𝑌 = 1 + 2𝑦1 + 4𝑦2 + 8𝑦3 +⋯

 Example) Factorizing 35 (= F) by 4 bits (x1, x2, y1, y2)

𝐸 = −0.3𝑥1 − 0.7𝑥2 − 0.3𝑦1 − 0.7𝑦2 − 𝑥2𝑦1 − 1.4𝑥2𝑦2 − 0.6𝑥1𝑦1
−𝑥1𝑦2 + 0.3𝑥1𝑦1𝑦2 + 𝑥2𝑦1𝑦2 + 0.3𝑥1𝑥2𝑦1 + 𝑥1𝑥2𝑦2 + 0.7𝑥1𝑥2𝑦1𝑦2

𝐼𝑥1 = −
𝜕𝐸

𝜕𝑥1
= 0.3 + 0.6𝑦1 + 1.0𝑦2 − 0.3𝑦1𝑦2 − 0.3𝑥2𝑦1 − 1.0𝑥2𝑦2 − 0.7𝑦1𝑥2𝑦2

𝐼𝑥2 = −
𝜕𝐸

𝜕𝑥2
= 0.7 + 1.0𝑦1 + 1.4𝑦2 − 1.0𝑦1𝑦2 − 0.3𝑥1𝑦1 − 1.0𝑥1𝑦2 − 0.7𝑥1𝑦1𝑦2

𝐼𝑦1 = −
𝜕𝐸

𝜕𝑦1
= 0.3 + 0.6𝑥1 + 1.0𝑥2 − 0.3𝑥1𝑦2 − 1.0𝑥2𝑦2 − 0.3𝑥1𝑥2 − 0.7𝑥1𝑥2𝑦2

𝐼𝑦2 = −
𝜕𝐸

𝜕𝑦2
= 0.7 + 1.0𝑥1 + 1.4𝑥2 − 0.3𝑦1𝑥1 − 1.0𝑦1𝑥2 − 1.0𝑥1𝑥2 − 0.7𝑥1𝑥2𝑦1

x1 x2 y1 y2

Weight Logic

W. A. Borders et al., Nature 573, 390 (2019).

Optimum combination of 
X and Y that minimize E
(Optimization problem)

3-body interaction 4-body interaction

coefficients are rounded off to 

have one significant digit.



Result of integer factorization

37W. A. Borders et al., Nature 573, 390 (2019).

F = 35 F = 161 F = 945



Points

 Possible to operate at room temperature

 Based on Mb-level of STT-MRAM technology

 Easy to implement many-body interaction

 Small

38
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Announcement #2

JAP Special Topic: Antiferromagnetic Spintronics

This Special Topic includes - but is not limited to - the following areas:

•Electrical or optomagnetic control of antiferromagnets

•Spin-orbit interactions and torques

•Ultrafast spin dynamics

•Antiferromagnetic textures: Domain walls, skyrmions, etc.

•Spin waves

•Characterization and imaging of antiferromagnets

•Microfabrication and thin film deposition techniques

•Spin transport properties including spin hall effect, spin galvanic effect, etc.

•Topological Hall effect

•Chiral anomaly

•Controlled exchange coupling

•Interaction with topologically protected electronic states

•Calculations of magnetic structure

•Insulating and metallic antiferromagnets

•Collinear vs noncollinear antiferromagnets

•Antiferromagnet/ferromagnet interfaces

•Synthetic antiferromagnets

•Memory devices

•Neuromorphic/brain-inspired computing

Guest Editors

Virginia O. Lorenz
(University of Illinois at Urbana-Champaign)

Shunsuke Fukami 
(Tohoku University) 

Olena Gomonay
(Johannes Gutenberg University Mainz) 

Submission 

Deadline: 

February 28, 2020



Take-home messages

• Classical computing hardware is inefficient for complex tasks.

• Employing brain-like architecture and nonvolatile memory 
drastically reduce power consumption.

• Employing emerging devices may have a chance for further 
complex tasks. But what are they?

• Spintronics is attractive. But, competitive?

• Spintronics p-bit is promising for optimization problems.
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Review paper: 
1. S. Fukami and H. Ohno, “Perspective: Spintronic synapse for artificial neural network,” J. Appl. Phys. 124, 151904 (2018).
2. J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, S. Fukami, M. D. Stiles “Neuromorphic spintronics” to be published in 

Nature Electronics (2019).

W. A. Borders et al., Nature 573, 390 (2019).


