Exploiting antiferromagnetic magnons for strong coupling and condensation phenomena

Akashdeep Kamra
Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, Trondheim
Néel ordered state is not the “true ground state” of an antiferromagnet!

“Classical” antiferromagnets exhibit various exchange-enhancement effects!

Antiferromagnetic quantum fluctuations may underlie superconductivity!
Superconductivity

\[k_B T_c = \hbar \omega_c \exp \left(-\frac{1}{\lambda} \right) \]
Magnon-mediated Superconductivity

\[k_B T_c = \hbar \omega_c \exp \left(-\frac{1}{\lambda} \right) \]

Kargarian et al., PRL 117, 076806 (2016).
Rohling et al., PRB 97, 115401 (2018).
Hugdal et al., PRB 97, 195438 (2018).
...
Superconductivity in Magnet/Metal Bilayers

Superconductivity in Magnet/Metal Bilayers

Outline

- Brief introduction
- Magnons in ferromagnets
- Antiferromagnetic magnons
- Exploiting squeezing-mediated quantum fluctuations
- Superconductivity enhancement due to squeezing
- Magnon-mediated indirect exciton condensation
Ferromagnet
Ferromagnet Ground State

Ferromagnet Excited State

Ferromagnet Excited State

Ground State

Magnon

Magnon

\[+ \]

Delocalized \(-\hbar\)

Considering only exchange interaction and Zeeman energy!

Wavefunctions Notation

Fully Ordered State

1 Magnon

2 Magnons
Ferromagnet Ground State

\[\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \]

\[\hat{\mathcal{Z}} \]

\[| \rangle \langle | \]

7th October 2019
Ferromagnet Ground State
Ferromagnet Ground State
Ferromagnet Ground State

\[H = K_x S_x^2 + K_y S_y^2 + \cdots \]

\[\left| \uparrow \uparrow \uparrow \uparrow \right\rangle + \left| \downarrow \downarrow \downarrow \downarrow \right\rangle + \cdots = S(r) \left| \upaarrow \right\rangle \]
Squeezed Optical Vacuum

Nonequilibrium state!
Not an eigenstate!

Chapter 7: Nonclassical light
Ferromagnetic Eigenmodes

Ground State

\[| \uparrow \rangle + | \downarrow \downarrow \rangle + | \downarrow \downarrow \downarrow \downarrow \downarrow \rangle + \ldots = S(r) | \rangle \]

Excitation

\[| \downarrow \rangle + | \downarrow \downarrow \downarrow \rangle + | \downarrow \downarrow \downarrow \downarrow \downarrow \rangle + \ldots = S(r) | \downarrow \rangle \]
Ferromagnet Summary

- Magnon-squeezing mediated by “weak” spin-nonconserving interactions such as anisotropy
- Net effect of the order of unity
- Bogoliubov transform causes squeezing

\[
\text{Squeezed magnon} \quad \left| \downarrow \right\rangle + \left| \downarrow \downarrow \downarrow \downarrow \downarrow \right\rangle + \left| \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \right\rangle + ... = S(r) \left| \downarrow \right\rangle
\]
Ferromagnet Summary

- Magnon-squeezing mediated by “weak” spin-nonconserving interactions such as anisotropy
- Net effect of the order of unity
- Bogoliubov transform causes squeezing

\[
\text{Squeezed magnon} \quad \begin{array}{c}
\downarrow \\
+ \\
\downarrow \downarrow \\
+ \\
\downarrow \downarrow \downarrow \\
+ \\
\text{...} \\
= S(r) \downarrow \\
\end{array}
\]

Antiferromagnet
Two Interpenetrating Sublattices

\[-\hbar + \hbar \]

\[\hat{Z} \]
Néel Ordered State
Néel Ordered State
Néel Ordered State

\[H = J \vec{S}_A \cdot \vec{S}_B + \cdots \]
Antiferromagnetic Ground State

\[H = J \hat{\mathbf{S}}_A \cdot \hat{\mathbf{S}}_B + \cdots \]

Quantum correlated fluctuations
Antiferromagnetic Eigenmodes

Ground State
\[|\rangle + |\downarrow\rangle + \ldots + |\ldots \downarrow\rangle + \ldots = S_2^2(r) |\rangle \]

Spin-up Excitation
\[|\uparrow\rangle + |\uparrow\rangle + \ldots + |\ldots \uparrow\rangle + \ldots = S_2(r) |\uparrow\rangle \]
Antiferromagnetic Eigenmodes

\[\sinh^2 r \]

\[|0\rangle_{sq} = \sum_n P_n |n, n\rangle_{sub} \]

\[\sinh^2 r + \cosh^2 r \]

\[|\uparrow\rangle_{sq} = \sum_n Q_n |n + 1, n\rangle_{sub} \]

\[r = 3 \]

\[|P_n|^2 \]

\[r = 1 \]

\[|Q_n|^2 \]
Degree of Squeezing

\[\tilde{H}_{\text{uni}} = \frac{J}{\hbar^2} \sum_{i,\delta} \tilde{S}_A(\mathbf{r}_i) \cdot \tilde{S}_B(\mathbf{r}_i + \delta) - \frac{K}{\hbar^2} \sum_i \left[\tilde{S}_{Az}(\mathbf{r}_i) \right]^2 - \frac{K}{\hbar^2} \sum_j \left[\tilde{S}_{Bz}(\mathbf{r}_j) \right]^2 \]

\[\cosh^2 r \sim \sqrt{\frac{J}{K}} \]

\[\frac{J}{K} = 10^4 \quad \Rightarrow \quad \cosh^2 r \approx 100 \quad \text{and} \quad r \approx 3 \]

Most squeezed state of light achieved thus far corresponds to \(r \approx 1.7 \)!
Antiferromagnet Summary

- Classical: Néel ordered ground state and sublattice-magnon
- Quantum (Actual): Squeezed vacuum and magnons
- Squeezing caused by exchange
- Large net effect (~ 100 for typical AFM)
- Bogoliubov transform causes squeezing

Antiferromagnet Summary

Ground State
\[|\downarrow\rangle + |\uparrow\rangle + \ldots + |\ldots\downarrow\rangle + \ldots \]

Spin-up Excitation
\[|\uparrow\rangle + |\downarrow\rangle + \ldots + |\ldots\uparrow\rangle + \ldots \]

Exploiting Magnon-Squeezing
Coupling Amplification

Coupling Amplification

Coupling Amplification

Amplification of sublattice-spin mediated interactions!

7th October 2019
Enhancement in Spin Pumping Current

Enhancing Cavity Quantum Electrodynamics via Antisqueezing: Synthetic Ultrastrong Coupling

C. Leroux, 1, 2, L. C. G. Govia, 2, and A. A. Clerk 3
1Department of Physics, McGill University, 3600 rue University, Montréal, Québec, Canada H3A 2T8
2Institute for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA

(Received 28 September 2017; revised manuscript received 1 December 2017; published 2 March 2018)

Wei Qin, 1, 2, Adam Miranowicz, 2, 3 Peng-Bo Li, 4 Xin-You Lu, 2, J. Q. You, 2, 6, and Franco Nori 2, 7
1Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100193, China
2CEMS, RIKEN, Wako-shi, Saitama 351-0198, Japan
3Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
4Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, Department of Applied Physics, Xi’an Jiaotong University, Xi’an 710049, China
5School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
6Department of Physics, Zhejiang University, Hangzhou 310027, China
7Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Received 27 September 2017; published 2 March 2018)

Experiments @ ~ 280 K
Sublattice-spin-mediated Coupling

- Theoretical proposal
- Nonequilibrium effect
- Best case enhancement ~ 10

- Experimental realization
- Eigenmode property
- Observed enhancement ~ 100

Superconductivity Enhancement
Magnon-mediated Superconductivity

\[k_B T_c = \hbar \omega_c \exp \left(-\frac{1}{\lambda} \right) \]

Kargarian et al., PRL 117, 076806 (2016).
Rohling et al., PRB 97, 115401 (2018).
Hugdahl et al., PRB 97, 195438 (2018).
...
Squeezed-magnon-mediated Superconductivity

\[k_B T_c = \hbar \omega_c \exp \left(-\frac{1}{\lambda} \right) \]
Squeezed-magnon-mediated Superconductivity

Squeezed-magnon-mediated Superconductivity

Magnon-mediated Exciton Condensation
Electron-Electron Attraction
Electron-Electron Attraction

Strong interaction

Squeezed magnon = Weak interaction

AFM | N
Electron-Electron Repulsion = Electron-Hole Attraction!
Magnon-mediated Exciton Condensation

Collaborators

Trondheim
- Eirik Erlandsen
- Even Thingstad
- Oyvind Johansen
- Arne Brataas
- Asle Sudbø

Konstanz
- Gianluca Rastelli
- Wolfgang Belzig

Utrecht
- Camilo Ulloa
- Rembert Duine

Munich
- Lukas Liensberger
- Hannes Maier-Flaig
- Stephan Gepraege
- Andreas Erb
- Rudolf Gross
- Hans Huebl
- Mathias Weiler

Dresden
- Sebastian Goennenwein
Squeezing, Strong Coupling and Superconductivity!

\[|\uparrow\rangle + |\downarrow\rangle + \ldots + |\uparrow\ldots\uparrow\rangle + \ldots \]