

Role of thermal activation in the spin-orbit torque switching of antiferromagnets

Markus Meinert

Department of Electrical Engineering and Information Technology, TU Darmstadt

Center for Spinelectronic Materials and Devices, Bielefeld University

Outline

- 1. Thermal activation in the Néel-order switching of Mn₂Au
- 2. Néel-order switching in magnetron-sputtered CuMnAs films
- 3. Electrical switching of the Néel order in MnN with the spin Hall effect of Pt
- 4. Ohmic contributions to the electrical read-out

Thermal activation in the Néel-order switching of Mn₂Au

Electrical observation of the Néel-order switching

Pulses and bursts

- Long single pulse heats the film
- > Chop the single pulse into N shorter pulses
- \succ Keep the total charge per burst constant, i.e. $Nj\Delta t = const$.

Electrical switching of Mn₂Au

а

Thermal activation model - Part I

Idea: Uncoupled grains, coherent switching.

Energy:

$$E/V_g = K_{4\parallel} \sin^2 2\varphi - L \cdot B_{\text{eff}}/V_{\text{cell}}$$

Energy barrier:

$$E_{\rm B} = \min_{cw,ccw} \left(\max_{[\varphi_i,\varphi_f]} [K_{4\parallel} \sin^2 2\varphi - (\boldsymbol{L} \cdot \boldsymbol{B}_{\rm eff})/V_{\rm cell}] - E(\varphi_i) \right)$$

Effective field:

$$\boldsymbol{B}_{\mathrm{eff}} = (\boldsymbol{j} \times \boldsymbol{z}) \cdot \boldsymbol{\chi}$$

- $K_{4\parallel}$: anisotropy energy density
 - grain volume

 V_{g} :

χ:

- *V*_{cell}: unit cell volume
 - spin-orbit torque efficiency

current density

3

- ∆T(t)

2

time (µs)

1

1.0

0.8

0.6

0.4

0.2

0.0

current density (× 10¹² A/m²)

Thermal activation model - Part II

Switching rate (Néel-Arrhenius):

$$\frac{1}{\tau} = f_0 \mathrm{e}^{-\frac{E_\mathrm{B}}{k_\mathrm{B}T}}$$

Switching probability:

$$P_{SW}(\Delta t) = 1 - e^{-\Delta t/\tau}$$

Film temperature:

attempt rate

 f_0 :

 Δt :

*T*₀:

d:

W:

- pulse width
- base temperature
- film thickness
- current channel width
- σ : electrical conductivity
- $ho_{\rm S}$: density of the substrate
- $C_{\rm S}, \kappa_{\rm S}$: thermal parameters of the substrate

500

400

300

200

100

ΔT(t) (K)

$$T(t,\Delta t) = T_0 + \frac{2whj^2}{\pi\kappa_S\sigma} \left(\operatorname{arcsinh}\left(\frac{2\sqrt{\kappa_S t/\rho_S C_S}}{\alpha w}\right) + \Theta(t-\Delta t) \operatorname{arcsinh}\left(\frac{2\sqrt{\kappa_S (t-\Delta t)/\rho_S C_S}}{\alpha w}\right) \right)$$

C.-Y. You et al., Appl. Phys. Lett. **89**, 222513 (2006).

Model parameters and PHE calculation

K = fitting parameter

$$\Delta R_{xy} = A \left\langle \sin 2\varphi \right\rangle$$

 $A \approx 1\Omega$

 $V_{\rm g} = \frac{\pi D^2}{4}h, D = 22$ nm, d = 25nm

$$V_{\rm cell} = 4.75 \times 10^{-29} {\rm m}^3$$

 $|\boldsymbol{L}| = 2 \times 4\mu_{\rm B}$

$$\chi = 0.2 \text{mT} / (10^{11} \text{A/m}^2)$$

 $f_0 = 10^{12} \text{s}^{-1}$
 $w \approx 12 \text{um}$

 $\sigma = (73\mu\Omega \text{cm})^{-1}$

Experiment vs. theory

Anisotropy energy per grain: $K_{4\parallel}V_g \approx 1.5 \mathrm{eV}$

Anisotropy energy density: $K_{4\parallel}V_g \approx 7.5 \,\mu \text{eV/f.u.}$

Thermal stability factor at RT: $_{KV_{T}}$

$$\Delta = \frac{\kappa v_{\rm g}}{k_{\rm B}T} \approx 60$$

Néel-order switching in magnetron-sputtered CuMnAs films

Magnetron-sputtered CuMnAs

- Growth of CuMnAs from alloy target
- Substrate temperature: 410°C

GaAs (001) / CuMnAs 100 nm / Ti 3nm

- Oriented growth of tetragonal CuMnAs with preferred (001) direction
- Perpendicular grain size ≈ 10 nm
- Large surface roughness

T. Matalla-Wagner, MM, et al., arXiv:1903.12387

Electrical switching of CuMnAs

T. Matalla-Wagner, MM, et al., arXiv:1903.12387

Parameter extraction

Dependences on $T, j, \Delta t$

$$\ln R_e = k_1 + \frac{k_2}{T}$$
$$\ln R_e = m_1 j + m_2 + \ln j$$

We switch grains with lower barrier at lower temperature, because χ is constant!

T. Matalla-Wagner, MM, et al., arXiv:1903.12387

Size matters: grain size distribution and (un-)blocking

"active part" of the distribution, changes with T_0

Joule heating makes blocked grains switchable! The switching must be thermally assisted! Otherwise, long-term retention of written state is impossible.

Electrical switching of the Néel order in MnN with the spin Hall effect of Pt

d

Switching antiferromagnets with the spin Hall effect

Pulse number

The antiferromagnet MnN

Ta 10 / MnN 32 / CoFe 1.6 / Ta 2

Electrical switching of MnN

M. Dunz, T. Matalla-Wagner, M. Meinert, arXiv:1907.02386

b)

Electrical switching of MnN: Parameters

Grain size analysis

Anisotropy analysis via "York protocol":

 $\langle E_B \rangle \approx 0.5 \mathrm{eV}$ @ 9nm

Energy barrier from switching and relaxation:

J. Sinclair et al., J. Magn. Magn. Mater. **476**, 278 (2019) M. Dunz, T. Matalla-Wagner, M. Meinert, arXiv:1907.02386

Ohmic contributions to the electrical read-out

UNPUBLISHED

Former Members

Acknowledgments

Antiferromagnetic Spintronics

> Spin Hall effect

Tristan Matalla-Wagner Isa Kleine-Brüning Mareike Dunz **Mathias Rath**

Katharina Fritz **Björn Gliniors** Niklas Libke Jan Albrecht

24

Prof. Dr. Günter Reiss

Nobumichi Tamura, ALS Berkely Hubert Ebert, LMU Munich

Ministerium für Innovation. Wissenschaft und Forschung des Landes Nordrhein-Westfalen

Satya Prakash Bommanaboyena Lukas Neumann **Christan Mehlhaff** Sebastian Dapper Kevin Diekmann **Dominik Graulich** Philipp Zilske

Open PhD/PostDoc position available at TU Darmstadt! Hiring soon!

