Spintronic operation in antiferromagnets

Takahiro Moriyama

Institute for Chemical Research, Kyoto University

<u>Highlights</u>

- 1. Spin pumping in FM/AFM
- 2. Terahertz spin pumping in AFM
- 3. Fabrication of chiral antiferromagnet Mn_3Ir

KYOTO UNIVERSITY

@Tohoku Univ. CSRN @Osaka Univ.

CSRN

Possibility of antiferromagnetic spintronics

		Magnetic susceptibility	Resonant frequency		
	FM	~ 10 ³ *	A few 10 GHz		
	AFM	~ 10 ⁻² **	A few THz	* Typical value of Fe ** Typical value of MnF ₂	
				2	
Small susceptibility		usceptibility	THz dynamics		
Ultra high density memory Tolerance to field disturbance			High speed magnetization switching THz emission		
Close packed memory bits			THz	emission	
Bit: 0	Bit: 0		Spin current	THz	
FM memory Bit interference due to stray field	FM memoryNo stray field allows 100Sit interferencetimes more packed bits*ue to stray field*S. Loth et al., Science 335, 196 (2012).		THz emission u resonance ex	THz emission using antiferromagnetic resonance excited by spin current	

See reviews in: Jungwirth et al., Nat. Nanotechnol., 11, 231 (2016), and Baltz, TM, et al., RPM 90, 015005 (2018)

Spin current interaction in AFM

How is the spin torque exerting in antiferromagnets?

Spin current dissipation and spin torque

Damping enhancement by spin pumping effect

Damping enhancement as a probe of spin torque effect.

FM/NM spin pumping

Damping α of the FM (FMR linewidth) is enhanced due to the spin current dissipation in NM.

$$\alpha \propto \mathbf{I}_{s}^{pump} - \mathbf{I}_{s}^{(0)} \qquad \begin{cases} \mathbf{I}_{s}^{pump} = \frac{g_{r}^{\uparrow\downarrow}}{4\pi} \mathbf{m} \times \frac{\mathrm{d}\mathbf{m}}{\mathrm{d}t} \\ \mathbf{I}_{s}^{(0)} = \frac{g_{r}^{\uparrow\downarrow}}{4\pi} \mathbf{m} \times \boldsymbol{\mu}_{s} \times \mathbf{m} \end{cases}$$

Tserkovnyak, et al. RMP 77, 1375 (2005)

Mizukami, PRB 66, 104413 (2002)

Damping enhancement $\propto \left[1 + \tilde{g}_r^{\uparrow\downarrow} R_{sd} \frac{1 + \tanh(t_{Cu}/\lambda_{Cu})\tilde{g}R_{sd}}{\tanh(t_{Cu}/\lambda_{Cu}) + \tilde{g}R_{sd}}\right]^{-1}$

Damping enhancement with AFM

Damping enhancement as a probe of spin dissipation in AFM.

Damping vs. FeMn thickness

Spin current carried by spin fluctuation; PRL **113**, 097202 (2014).; APL **106**, 162406 (2015); PRB **92**, 020409R (2015).; PRL **118**, 147202 (2017).

Damping enhancement vs. AFM magnetic structure

AFM twisting and damping enhancement

Damping is maximized at the relative angle $\sim 180^{\circ}$ at which the twisting is maximized.

Moriyama, *PRL* 119, 267204 (2017)

Damping control by temperature

Damping drastically changes in the temperature range of 300 ~ 400 K.

 \rightarrow Beneficial for spintronic devices where Joule heating is involved during the operation (*e.g.* STT-MRAM)

Antiferromagnetic resonance

Chiral antiferromagnets: Mn₃X

Ajaya K. Nayak, et al., Sci. Adv. 2, e1501870 (2016).

	$\frac{AHC}{\sigma}$
symmetry-imposed tensor shape	$\begin{pmatrix} 0 & \sigma_{xy} & 0 \\ -\sigma_{xy} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
Mn ₃ Rh	$\begin{pmatrix} 0 & -284 & 0 \\ 284 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
Mn ₃ Ir	$\begin{pmatrix} 0 & -312 & 0 \\ 312 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
Mn ₃ Pt	$\begin{pmatrix} 0 & 98 & 0 \\ -98 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Zhang, PRB 95, 075128 (2017)

Measurements on Mn₃Ir?

Summary

1. Spin pumping in AFM/FM bilayer:

ightarrow Control spin dissipation by the AFM order

ightarrow FM damping is controlled by AFM

APL **106**, 162406 (2015); PRB **92**, 020409R(2015); PRL **119**, 267204 (2017); APEX **11**, 073003 (2018); PRApplied **11**, 011001 (2019)

2. Antiferromagnetic spin pumping:

 \rightarrow Experimentally observed for the first time.

→ Large $g_{\uparrow\downarrow}$ = 43 nm⁻² was determined.

PRMatererials **3**, 051402 (2019); manuscript under review

3. AHE in Mn₃Ir:

 \rightarrow Positive correlation between S and AH conductivity

 \rightarrow AH conductivity is ~40 Ω^{-1} cm⁻¹

High damping

Collaborations & Acknowledgements

тоноки Mr. T. Ikebuchi

Prof. T. Ono

Kyoto Univ.

Mr. K. Oda

<u>Tohoku Univ.</u> Prof. M. Kimata

UCLA

<u>U. S. A</u> Prof. Y. Tserkovnyak (UCLA) Prof. S. Takei (CUNY)

Gifu Univ.

SPring-8 Dr. T. Okouchi

Mr. K. Hayashi Prof. K. Yamada Prof. M. Shima Prof. Y. Ohya

<u>Europe</u>

Prof. G. Finocchio (Messina) Prof. M. Carpentieri (Bari)

Thank you for your attention!