Large Spintronic Responses in Weyl Antiferromagnets

Correlation, Topology, Kagome, Spintronics

Satoru Nakatsuji Dept. of Physics, UTokyo ISSP, UTokyo IQM, Johns Hopkins U. CREST, JST

Overview

Functional Magnets

- Topological Weyl Semimetals,
- Luttinger Semimetals
- Functional Antiferromagnets Mn_3X
 - Topology and Multipoles
 - Novel Functions, Spintronics
- Energy Harvesting

Collaborators

ISSP, U-Tokyo

T. Higo, T. Tomita, M. Ikhlas, A.Sakai, T. OhtsukiK. Kuroda, T. Kondo, S. Shin

M. Kimata, K. Kondo, Y. Otani UC Berkley Liang Wu, J. Orenstein NIST D. Gopman, R. D. Shull Naval Res. Lab. O. van 't Erve RIKEN

R. Arita, M-T. Suzuki, T. Koretsune *Colorado State Univ., UT Austin,* Hua Chen, A. MacDonald, *Northwestern Univ.* Pallab Goswami

Functional Antiferromagnet

Novel Functional Magnet Mn₃X

Novel Functions in Antiferromagnet Large Fictitious Field in Momentum Space

Anomalous Hall Effect

Heat

Magneto Optical Effect

Magnetic Spin Hall Effect

Topological Weyl Magnets

Weyl Semimetal State

X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, 2011

Topological Metal with broken spatial inversion/ time reversal symmetry.

Pair of Linearly dispersive excitation Similar to Graphene, but in 3D.

Weyl Eq. $\mathcal{H} = \sum_{i=1}^{3} \mathbf{v}_i \cdot \mathbf{k} \sigma_i$

Robust against Symm. Breaking perturbation

Crossing points: Magnetic Monopoles

Layered Quantum Hall Effect
Chiral Anomaly

Ct Source and sink of Berry curvature/ Fictitious Field

Topological Aspect of AHE

Berry Phase Description e.g. Nagaosa, Sinova, Onoda, MacDonald, Ong., Rev. Mod. Phys. (2010).

Anomalous Hall current

$$\mathbf{J}_{\mathrm{H}} = 2e^{2} \mathbf{E} \times \sum_{\mathbf{k}} f_{\mathbf{k}}^{0} \mathbf{\Omega}_{\mathbf{k}}$$

Berry curvature
 e^{2} (-)

 $\sigma_{xy} = n - \frac{1}{\hbar} \langle \Omega \rangle$

Anomalous Hall conductivity

Independent of lifetime τ

Material Class for AHE at B = 0

✓ Ferromagnets normally Berry curvature Ω ~ M
 ✓ Spin Liquids? However theoretically, |Ω| > 0
 ✓ Antiferromagnets? even when B = 0 and M = 0
 Shindou, Nagaosa (2001). Bruno (2006). Batista, Martin (2008). Chen et al., (2014)...

Spin liquids and AFM with large AHE: Nontrivial Topological Phases

Spontaneous Hall Effect in Spin Liquid

T < 2*J* ~ 1.5 K Spin Ice: Quantum Fluctuations in the Spin Ice State c.f. Pr₂Zr₂O₇, Pr₂Hf₂O₇

Machida et al., Nature (2009), Balicas et al., Phys. Rev. Lett.(2011).

Spontaneous Hall Effect in Spin Liquid

Machida et al., Nature (2009), Balicas et al., Phys. Rev. Lett.(2011).

Fermi Node at Quadratic Band Touching

Luttinger Semimetal

Kondo & Shin, ISSP Nature Com. (2015)

Fermi Node at Quadratic Band Touching

Luttinger Semimetal

Kondo & Shin, ISSP Nature Com. (2015)

Large Anomalous Hall Effect in Antiferromagnets

Antiferromagnets:

Naturally abundant

Higher Energy Scale
 than Spin Liquids

Kagome Metal AFM Mn₃Sn

NonCollinear AFM $T_N = 430$ K

$$\rho_{\rm H} = \frac{R_0 B + R_{\rm S} \mu_0 M}{\sim 0.01 \ \mu \Omega \rm{cm}}$$

Large AHE in AFM Mn₃Sn at R.T.

~ 3 μΩcm

$$\rho_{\rm H} = \frac{R_0 B + R_{\rm S} \mu_0 M}{\sim 0.01 \ \mu \Omega \rm{cm}}$$

Nature 527 212 (2015).

Large AHE in AFM Mn₃Sn at R.T.

 $\rho_{\rm H} = \frac{R_0 B + R_{\rm S} \mu_0 M + \rho_{\rm H}^{\rm AF} \sim 3 \ \mu\Omega \text{cm}}{\sim 0.01 \ \mu\Omega \text{cm}}$ Large AHE is induced not by external or internal field, but the fictitious field.

Hall Conductivity vs. Magnetization

Q: How much field is needed for Ordinary HE to reach AHE?

Hall Conductivity : 100~1000 times more than FMs Large Berry Curvature ~ a few 100 T

Mn₃Sn Thin Film on Si substrate

0.5

M (mµ_B/mole) 5.

Large Anomalous Hall Effect as Bulk DC Sputtering Method Mn₃Sn-target, Si/SiO₂/Mn_{3+x}Sn_{1-x} 0.6 "1" $\Delta R_{\rm H}$ $Mn_{3.05}Sn_{0.95}$ thin film ntensity (a.u.) Si Mn₃Sn (021)(011) $Mn_{3.05}Sn_{0.95}$ -0.6 Field B (T) on SiSiO_o 35 40 2θ (deg.) 55 30 45 50 25 $\Delta R_{\rm H} \sim 1 \Omega >> \text{AF-AMR} \sim 0.01 \Omega$ a = 5.67 Å, c = 4.52 Å \Rightarrow bulk results

> T. Higo et al., Applied Phys. Lett. (2018). "featured articles"

Topological Spintronics using AFMs

Fictitious Field e.q. a few 100 T in Momentum Space

Spin Current

Magnetic Spin Hall Effect

Effect

Nernst Effect vs. Magnetization

Nernst Effect vs. Magnetization

Magnetic Weyl Semimetal: Toy Model

Magnetic Weyl Fermions

Berry Curvature from Weyl nodes near $E_{\rm F}$

Kuroda, Tomita, SN et. al., Nature Materials (2017). Ikhlas, Tomita, SN et. al., Nature Physics (2017).

Chiral Anomaly: Mag. Weyl Fermions

RESEARCH | REPORTS

TOPOLOGICAL MATTER

Science 2015

Evidence for the chiral anomaly in the Dirac semimetal Na₃Bi

Jun Xiong,¹ Satya K. Kushwaha,² Tian Liang,¹ Jason W. Krizan,² Max Hirschberger,¹ Wudi Wang,¹ R. J. Cava,² N. P. Ong¹*

Strongly Anisotropic Magnetoconductance Only when *E*//*B*, Positive Magenetoconductance

D. T. Son and B. Z. Spivak, Phys. Rev. B 88, 104412 (2013).

Chiral Anomaly: Mag. Weyl Fermions

Nature Materials (2017).

26

Mn₃Sn, Weyl Magnet

Control of Fictitious Field of a few 100 T by External Magnetic Field of 100 G.

Control of Weyl Points

Control of Fictitious Field of a few 100 T by External Magnetic Field of 100 G.

Topological Spintronics using AFMs

Fictitious Field e.q. a few 100 T in Momentum Space

Spin Current

Magnetic Spin Hall Effect

Magnetic Multipole

Suzuki, Arita et al., PRB 094406(2017).

NonCollinear AFM $T_N = 430$ K

(Rank = 1)

The Same Mag. Space Group Breaking Time Reversal Symm.

Magnetic Octupole

Suzuki, Arita et al., PRB 094406(2017).

NonCollinear AFM $T_N = 430$ K

Magnetic OctupoleDipole(Rank = 3)(Rank =1)

The Same Mag. Space Group Breaking Time Reversal Symm.

Magnetic Octupole

FM

[2110]

[0001]

[0110] <

Suzuki, Arita et al., PRB 094406(2017).

MOKE imaging of AF domains

domain nucleation and domain wall propagation were observed The first observation of the domain reversal in an AF metal by the MOKE microscopy

Topological Spintronics using AFMs

Fictitious Field e.q. a few 100 T in Momentum Space

Current

Magnetic Spin Hall Effect

Spin Current

Spin current is time reversal even. Likewise, spin Hall effect is the case.

FM: Spin Hall Effect

> The SH angle $\theta_s = I_s/I_c$ for FM (or NM) DOES NOT change its sign

Spin Accumulation

Spin Hall Effect is time reversal odd; controllable by M Nature (2019)

Magnetic Spin Hall Effect

Off-diagonal inter-band element of spin density

$$\langle s^{\alpha} \rangle_{od} = -\frac{e\hbar}{2} E_{\beta} \sum_{m \neq n} \int [d\mathbf{k}] (f_m - f_n) \mathrm{Im} \left[\frac{v_{mn}^{\beta} \sigma_{nm}^{\alpha}}{(\epsilon_m - \epsilon_n)^2} \right]$$

Kimata et al., Nature (2019)

MSHE

$$\langle s^{\alpha} \rangle_{od} = -\frac{eh}{2} E_{\beta} \sum_{m \neq n} \int [d\mathbf{k}] (f_m - f_n) \operatorname{Im} \left[\frac{v_{mn}^{\beta} \sigma_{nm}^{\alpha}}{(\epsilon_m - \epsilon_n)^2} \right]$$

No dependence on disorder in the relaxation time approximation

Intrinsic effect like AHE, determined by the electronic structure \succ

Spin Hall Effect is time reversal odd; controllable by M

Topological Spintronics using AFMs Large Fictitious Field in Momentum Space

Anomalous Hall Effect

Heat

Anomalous Nernst Effect

Magneto Optical Effect

Magnetic Spin Hall Effect

Weyl Magnet: Energy Harvesting

✓ IoT: Trillions of Sensors

✓ Maintenance free
 power source

 $\checkmark \mu W^{\sim}mW$ is enough to operate sensors and nodes

✓ Thermoelectric power generation

Anomalous Nernst effect for Harvesting?

- A) *E* || Heat current
- B) Pillar structure device
- C) High Production Cost
- D) Toxic, precious (Bi,Te,Pb)
- E) Large output ~ 100 μ V

Anomalous Nernst effect

- A) $E \perp$ Heat current
- B) Simpler device (film)
- C) Low Production Cost
- D) Safe, naturally abundant
- E) small output ~ 0.1 μ V

Giant anomalous Nernst effect in Co₂MnGa

 Co₂MnGa: Magetic Weyl Semimetal
 S_{yx} ~ 6 μV/K at 300 K, ~ 8 μV/K at 400 K.
 C. Wang et al., PRL (2016). J. Kübler & C. Felser EPL (2016).
 One order magnitude higher than previous reports
 See also: Y. Sakuraba *et al.*,arXiv:1807.02209
 S. N. Guin *et al.*, arXiv:1806.06753

Proximity to the Quantum Lifshitz Transition

Weyl Magnet: Energy Harvesting

Summary and Perspective

Functional Magnet

Ε

 k_v

^ k_x

Application Non-volatile Memory Energy Harvesting...

Topological SpintronicsMagnetic Spin Hall Effects,Spin Orbit Torque···MSHE

Mn₃Sn

Functional Antiferromagnets

