Scanning magneto-thermoelectric detection

of spin-orbit torque switching in antiferromagnetic films

<u>Tomas Janda^(1,2)</u>, <u>Joao Godinho^(1,2)</u>,

Z. Soban⁽¹⁾, T. Ostatnicky⁽²⁾, G. Ulrich⁽³⁾, B. Kaestner⁽³⁾, S. Reimers⁽⁴⁾, P. Wadley⁽⁴⁾,

V. Novak⁽¹⁾, T. Jungwirth⁽¹⁾, J. Wunderlich^(1,5,6)

⁽¹⁾ Institute of Physics ASCR, v.v.i., Cukrovarnicka 10, Prague, CR

⁽²⁾ Faculty of Mathematics and Physics, Charles University, Prague, CR

⁽³⁾ Physikalisch-Technische Bundesanstalt, Magnusstraße 9, Berlin, Germany

⁽⁴⁾ Nottingham University, Germany

⁽⁵⁾ Hitachi Cambridge Lab, Cavendish Lab, UK

⁽⁶⁾ University of Regensburg, Germany

ANTIFERROMAGNETS

Fast (THz) dynamics: switching, domain wall motion GHz in ferromagnets

Radiation-hard Spin not charge based (as ferromagnets)

Insensitive & invisible to magnetic fields

No stray field cross-talks No net moment

BUT

what about

electrical DETECTION via Magnetotransport

Insulators, semiconductors, semimetals, metals, ... Ferromagnets mostly metals

Non-volatile

Magnetic order

(as ferromagnets)

Electrical DETECTION: Anisotropic Magnetoresistance (AMR)

→ CuMnAs / Mn₂Au: Electrical <u>switching between AF states</u> by SOT

(Locally broken inversion symmetry)

Eleptical DETECTION: Magnetric pline ang Distance (AMR)

DETECTION: Uniaxial Switching (180° Néel vector reversal)

WANTED: ALTERNATIVE (cheap) table-top DETECTION METHOD

Generate <u>locally</u> temperature gradient and measure <u>globally</u> electric response.

ALTERNATIVE table-top DETECTION METHOD

Generate <u>locally</u> temperature gradient and measure <u>globally</u> electric response.

ALTERNATIVE table-top DETECTION METHOD

Generate <u>locally</u> temperature gradient and measure <u>globally</u> electric response.

ALTERNATIVE table-top DETECTION METHOD

Generate <u>locally</u> temperature gradient and measure <u>globally</u> electric response.

(thermoelectric equivalent to the **anomalous Hall effect**)

Anisotropic-Magnetothermopower: $E_y = -(S_+ - S_- \cos 2\varphi) |\nabla T| \sin \varphi_T$ (response to the longitudinal temp. gradient)

Planar Anomalous Nernst effect: $E_y = -S_{-}\sin 2\varphi |\nabla T| \cos \varphi_T$ (response to the <u>transverse temp. gradient</u>)

Thermoelectric signal in CuMnAs bars

Resulting thermoelectric signal

 $5\,\mu m$ wide bars (45 nm thick CumnAs film)

XMLD-PEEM

P. Wadley, et al., Nature Nano. (2018)

Cross bar geometry

Anisotropic magnetothermo power

Figure 2 : Soap-bubble-like domain wall expansion.

From: Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses

T. Janda, et al, Nat. Comm. 8, 15226 (2017)

thin 20nm CuMnAs (wafer O 049)

(~20 nV amplitude,0.01 GW/m² power density)

Longitudinal Anisotropic Magneto-Seebeck Effect

Longitudinal Anisotropic Magneto-Seebeck Effect

(~50 nV amplitude, 0.01 GW/m² power density)

(~50 nV amplitude, 0.01 GW/m² power density)

Anisotropic Magneto-Seebeck Effect

 $J_Q \sim 3 \times 10^{10} \text{ A/m}^2$

(~50 nV amplitude, 0.01 GW/m^2 power density)

AF with uniaxial anisotropy: transversal temp. gradient

AF with uniaxial anisotropy: transversal temp. gradient

LARGE CURRENT PULSES: Shuttering large domains into multiple small domains

(related to talks on Monday from T. Jungwirth and K. Olejnik)

AMS effect measured with foscused Laser spot

SOT bipolar switching

 $J_P = 1.6 \times 10^7 \text{ A/cm}^2$

Thermal (unipolar) switching

Summary

SCANNING MICROSCOPY based on the magneto-anisotropic Seebeck effect

- Wavelength restricted "far-field" and high-resolution "near-field" technique

OBSERVATION:

- Effect of **patterning on the antiferromagnetic domain structure** in CuMnAs bars
- Reversible and current polarity dependent SOT switching showing correlated
 resistance variations in CuMnAs films with uniaxial and biaxial magnetic anisotropy
- Shattering of large antiferromagnetic domains by high magnitude current pulses