

Exotic spin-orbit torques from topological materials and ferrimagnets

Hyunsoo Yang

Department of Electrical and Computer Engineering National University of Singapore

Charge electronics \rightarrow Spin electronics

1998

Information transfer

= electron transfer

 $Drain$

 n^+

 p

Spin wave

MTJ memory

Spin transistor

of Singapore

Charge transfer and processing energy loss is huge \rightarrow All spin electronics

Sourceo Oxide

 $n⁺$

 $Body$

Spin torque MRAM

Spin Hall and Inverse Spin Galvanic effects

- Spin orbit coupling in the bulk of nonmagnet.
- Can be from intrinsic or extrinsic (impurities).
- Quantified by spin Hall angle (SHA or $\theta_{\rm sh}$)

 $\vec{j}_s \propto \theta_{sh} (\vec{j}_c \times \vec{\sigma})$

Spin Hall effect Rashba-Edelstein effect

- Structures with broken inversion symmetry
- Interfacial spin orbit coupling.
- Depends on the nature of the interface.
- Quantified by Rashba coefficient (∞ magnitude of **E=-V**)

$$
\hat{H}_{\rm so} = \xi \hat{\sigma} \cdot (\nabla V \times \hat{\mathbf{p}})
$$

Is spin accumulation direction the same for both cases?

Theory: D'yakanov and Perel (1971), Hirsch (1999), Edelstein (2000), Zhang (2000), Murakami, Nagaosa, Zhang (2003), Sinova *et al.* (2004),…Manchon and Zhang (2008). Experiments: (semiconductors) Ganichev *et al.* (2002), Kato *et al.* (2004), Wunderlich *et al.* (2005) (metals) Valenzuela and Tinkham (2006), Saitoh *et al.* (2006), Kimura *et al.* (2007).

Appl. Phys. Lett. 108, 202406 (2016)

- \triangleright The SOT polarity is a function of heavy metal thickness
- \triangleright Thick regime: spin Hall dominant
- \triangleright Thin regime: interfacial spin-orbit with opposite sign to spin Hall

Is the sign of θ_{SH} fixed for a given material?

c d Reverse switching polarity by oxygen engineering

-Sign of spin Hall angle changes across a transition thickness of SiO_2 (t = 1.5 nm) -Cannot be understood by spin Hall physics \rightarrow suggest the role of interface **-Sign of spin Hall angle changes across a transitionally** -Cannot b

2 nm MgO 2 nm Pt

Adv. Mat. **30**, 1705699 (2018)

Electric-field control of effective spin Hall sign

Competition b/w bulk spin Hall vs. interfacial SOC with opposite sign Device can switch to either up or down depending on its programmed SOT state \rightarrow reconfigurable spin logic

0 1 0

Nat. Commun. **10**, 248 (2019) 8

 J_{e}

First principle calculations

First principle calculations performed in Prof. Nicholas Kioussis's group, *California State University.*

- \triangleright The effective Rashba parameter ($P\alpha_{\sf R}$) changes sign as oxygen is filled at the Pt/Co interface.
- The spin accumulation direction changes sign when the negative effective Rashba torque exceeds the spin Hall torque.
- Effective Rashba coefficient changes its sign for 30% oxidization.

Gradual modulation of SOTs

- \triangleright Application of V_q pulses on a Pt (1.5 nm)/Co (0.8 nm) device.
- \triangleright Thin gate oxide results in modulation at room temperature.
- \triangleright The sign of effective spin Hall angle of the material can be changed using electricfield.
- Gradual modulation of SOTs can be applied to neuromorphic devices.

Phys. Rev. Appl. **11**, 054065 (2019), Nat. Commun. **10**, 248 (2019) 11

Neuromorphic Computation

Even the simplest brain is superior to a super computer, the secret: ARCHITECTURE!

Human brain:

- 10^6 neurons / cm²
- 10^{10} synapses / cm²
- 2 mW / cm² £.

Total power consumption: 20 Watts

Memristors:

- Cheap
- Power efficient
- Small

From: Versace, M. & Chandler, B. The brain of a new machine. Spectrum, IEEE (2010).

Spike temporal dependence

- \triangleright Frequent stimulation results in larger modulation of weight.
- \triangleright The magnetic synapse follows the STDP curve.
- Closely spaced pre- and post-synaptic spikes results in larger weight modulation.

Phys. Rev. Appl. **11**, 054065 (2019) 15

Learning, forgetting & training

- \triangleright After removing the stimulation the weight starts decreasing again similar to forgetting behavior of human brain. 0 10 20 30 40

No. of training pulses (N)

mulation the weight starts decreasing again similar to

iman brain.

of training pulses the forgetting rate decreases.

Phys. Rev. Appl. 11, 054065 (2019)
- \triangleright With increasing number of training pulses the forgetting rate decreases.

Scanning photovoltage microscope with currents

- DC current is applied to induce spin accumulation.
- **❖ Circularly polarized light normally** incidents on the sample.
- **❖ Magnetic circular dichroism.**
- ❖ Photovoltages are detected by lock-in amp.
- **Exercise Semple stage enables** mapping.

 $\mathcal{L}_{photovoltage} = V_{RCP} - V_{LCP}$

RCP light excites spin up electron, while LCP light excites spin down electron.

- $V_{photovoltage} > 0 \rightarrow$ local spin direction is spin down.
- $V_{photovoltage}$ < 0 \rightarrow local spin direction is spin up.

Nat. Comm. **9**, 2492 (2018); Adv. Opt. Mat. **4**, 1642 (2016)

Accumulated spin imaging in Pt and $Bi₂Se₃$

- Sign switches in opposite edges and with reversing currents.
- Both semiconductors and metals work.
- ◆ Can extract spin Hall angle and spin lifetime without a ferromagnet.

Nat. Comm. **9**, 2492 (2018)

In-plane and out-of-plane SOT efficiency in $Bi₂Se₃$

- θ_{\parallel} increase by 10 times at low temperature (upto \sim 0.42).
- θ_1 has the same order of magnitude compared to θ_{\parallel} .
- Origin of the observed spin-orbit torques is topological surface states in $Bi₂Se₃$.
- **-** Hexagonal warping in the TSS of Bi_2Se_3 can account for θ_{\perp} .

PRL **114**, 257202 (2015)

3D topological insulators (TIs)

□Spin polarized surface currents \Box Spin-momentum locking \rightarrow giant spin Hall angle?

Exotic spin Hall angles from topological insulators

Review: J. Phys. D: Appl. Phys. **51**, 273002 (2018)

- TI magnetization switching reported in a Cr doped TI at 1.9 K with an external magnetic field [Nat. Mater. 13, 699 (2014)].
- Demonstrated magnetization switching of $Bi₂Se₃/NiFe$ at room temp with a low critical current density $(J_{C}$ ~6×10⁵ A/cm²) and without a magnetic field.
- A giant $\theta_{\text{TI}} = 1.75$.

-Extremely large spin Hall angle, but large power consumption due to large resistivity -J.P. Wang (Minnesota) also reported sputtered Bi $_{2}$ Se $_{3}$ (Nat. Mater. 17, 800 (2018)) θ = 18.6, J_c = 4.3 \times 10⁵ A cm⁻²

J. Phys. D: Appl. Phys. **52**, 224001 (2019)

Spin relaxation time in $Bi₂Se₃$

9 **1** $\frac{2}{\text{Delay (ps)}}$ **1 2** $\frac{3}{\text{Delay (ps)}}$ **4 5**
 **ensitive to bulk due to large penetration depth of light

on frequency is 2.13 THz from coherent vibrations of

ngitudinal optical phonons of** Bi_2Se_3 **

atially d** - Signal sensitive to bulk due to large penetration depth of light - Oscillation frequency is 2.13 THz from coherent vibrations of the A_{1g} longitudinal optical phonons of Bi_2Se_3

- Exponentially decay with a characteristic time of 1.3 ps

S. Xu, *et al.* Nat. Commun. **6,** 6870 (2015)

S. Xu, *et al.* Phys. Rev. Lett. **116,** 096801 (2016) P. K. Das, *et al.* Nat. Commun. **7,** 10847 (2016)

Td-WTe² : Weyl semimetal, strong Edelstein effect, good conductivity, 2D layered TMD material, less roughness than MBE grown TI such as $\mathrm{Bi}_2\mathrm{Se}_3$, etc.

Ideal material to achieve the spin orbit torque driven magnetization switching.

SOT driven magnetization switching-*I* along *b*-axis

- Charge current is applied in the *b*-axis.
- Spin current is generated along the *a*-axis.

of Singapore

Room-temperature nanosecond spin relaxation

- Centimeter-scale, chemical vapor deposition (CVD)-grown few-layer 1T'-W(Mo)Te₂
- Room-temperature 1.2 ns spin relaxation

Adv. Sci. **5**, 1700912 (2018)

Science **351**, 587 (2016)

90 degree rotation Not compatible with MTJs Small MR \rightarrow slow reading

How about a **multilayer** or **ferrimagnet (FIM)**? -Easy perpendicular anisotropy, enough magnetic volume

 \rightarrow Limitation on FM thickness

 \rightarrow Thermal stability issue

SOT in ferrimagnet : CoGd

- **❖** Films deposited with varying Co and Gd compositions.
- CoGd has bulk PMA.
- Thermally stable thick magnetic layer is grown.

⁴⁰ Phys. Rev. Lett. **118**, 167201 (2017)

Anomalous scaling of SOT in ferrimagnets

Phys. Rev. Lett. **118**, 167201 (2017) 42

- 6 H_L and 1/M_s are normalized ❖ Switching efficiency ($\chi = H_p / J_s$), with respect to their respective values for $Co₈₀Gd₂₀$.
- ⁶ understanding. ⁰ explained by existing SOT ² disproportionate (to 1/M_S) $\sum_{i=1}^{\infty}$ $\cdot \cdot$ Exceptional and change of η and H_i cannot be
- 45 lies ❖ 10 times increase in θ_{SH} due to negative exchange coupling າe

Multilayer: structural asymmetry can be added up

Maesaka, IEEE Trans. Magn. 38, 2676 (2002) Kim, PRB 53, 11114 (1996)

-Two successive Co/Pd and Pd/Co interfaces are structurally dissimilar.

- -Lattice mismatch (9%) between Pd and $Co \rightarrow$ Strain engineering
- -This distortion is 30% stronger for Co/Pd than for Pd/Co interfaces

Phys. Rev. Lett. **111**, 246602 (2013)

Ferromagnet vs. ferrimagnet

Alternating exchange fields in ferrimagnet (FIM) on an atomic scale \rightarrow much less spin dephasing \rightarrow long spin coherence length \rightarrow Bulk-like torque in FIM (20 times enhanced SOT compared to FM)

- FM Co/Ni: $t_{\sf Co/Ni} \uparrow \to {\sf SOT} \downarrow$. $H_L = \frac{\hbar}{2e} \frac{J_{_{HM}}}{M_{_S} t_{_{FM}}} \theta_{_{HM}} \bigg[1 \text{sech}$ $\frac{H M}{H} \theta_{H M} \left[1 - \text{sech} \left(\frac{t_{H M}}{H} \right) \right]$ $L = \frac{h}{2e} \frac{J_{HM}}{M_{star}} \theta_{HM}$ $\frac{H M}{S t_{FM}} \theta_{H M}$ $\left[1-\text{sech}\left(\frac{t_{HM}}{\lambda_{HM}}\right)\right]$ $\frac{1}{e}\frac{J_{H}}{M_{S}t}$ θ λ . poor compensation
= $\frac{h}{2e} \frac{J_{HM}}{M_{S}t_{FM}} \theta_{HM} \left[1 - \text{sech}\left(\frac{t_{HM}}{\lambda_{HM}}\right)\right]$ h
- FIM Co/Tb: SOT **diverges** at **compensation**.
- SOT in FIM is **~20 times larger** than that in FM.
- SOT in FIM shows **bulk-like-torque** characteristic.

SOT current induced switching efficiency

SOT switching efficiency: $\eta = H_{p}/J_{w}$ **efficiency**
I nucleation and pro
 $\eta = H_P/J_w$ Most switching through DW nucleation and propagation

- *η* is in line with that of SOT effective fields, decreasing for FM and **diverging** at **compensation.**
- In FIM system, *η* is ~**20 times higher** than FM system.

Nat. Mater. **18**, 29 (2019) 48

*M*_S & *t*_{FM/FIM} effect?

$$
t_{\text{FM/FIM}} \text{effect?}
$$
\n
$$
H_{L} = \frac{h}{2e} \frac{J_{HM}}{M_{s}t_{FM}} \theta_{HM} \left[1 - \text{sech}\left(\frac{t_{HM}}{\lambda_{HM}}\right) \right] \qquad \eta, H_{L} \propto 1/(M_{s}t)
$$

Surprisingly in FIM, the scaling trend of *η* and *H^L* **contradicts** SOT governing equation.

Nat. Mater. **18**, 29 (2019) 49

Spin pumping in a ferrimagnet **Cu Co ^a ^b**

Spin dephasing length in Co/Tb > 13 nm Spin dephasing in FM is 1.2 nm (PRL 117, 217206 (2016))

Nat. Mater. **18**, 29 (2019) 50

Summary

- Spin orbit technologies
	- Oxygen modulation in HM/FM interface can switch spin Hall sign \rightarrow neuromorphic devices
	- Spin accumulation imaging (www.tuotuot.com)
	- Weyl semimetal spin sources

Bulk-like

– Ferrimagnetic spintronics

