Light-matter interactions in plasmonic cavities (Bringing nanophotonics to the atomic scale)

http://cfm.ehu.es/nanophotonics

Center for Materials Physics, CSIC-UPV/EHU and Donostia International Physics Center - DIPC Donostia-San Sebastián

SPICE Workshop: Molecular electro-opto-spintronics October 15-18, 2019, Mainz, Germany

Electromagnetic Coupling on an Atomic Scale

J. Aizpurua,¹ G. Hoffmann,^{2,*} S. P. Apell,³ and R. Berndt²

¹National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8423 ²Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany ³University Outreach, Kristianstad University, SE-291 88 Kristianstad, Sweden (Received 17 May 2002; published 24 September 2002)

Subatomic scale modifications of the tip-sample region cause spectral shifts of the fluorescence as demonstrated for a monatomic step

Light-matter interaction at the nanoscale

Intro to plasmonics

Plasmonic nanogap

Quantum effects in nanogaps

Photoemission in nanogaps

Atomistic effects in field localization

Transport at optical frequencies

Exciton-plasmon coupling

Molecular electroluminescence in nanogaps

Light-matter interaction at the nanoscale

Intro to plasmonics

Plasmonic nanogap

Quantum effects in nanogaps

Photoemission in nanogaps

Atomistic effects in field localization

Transport at optical frequencies

Exciton-plasmon coupling

Molecular electroluminescence in nanogaps

Optical cavities to enhance light-matter interaction

Dielectric resonator

Photonic crystals

Plasmonic cavity

Optical cavities to enhance light-matter interaction

Optical mirrors

Photonic crystals

Dielectric resonator

Plasmonic antenna

 V_{eff}

Q~1/κ

Bulk and Surface plasmon polaritons

Nano-optics with localised plasmons

The simplest plasmonic resonator

Enhancement of absorption and emission: Bringing effectively the far-field into the near-field

Excitation of a plasmon in a metallic spherical nanoparticle by a pulse

Metal particle plasmons

FIG. 2 (color). True color photograph of a sample of gold nanorods (red) and 60 nm nanospheres (green) in dark-field illumination (inset upper left). Bottom right: TEM images of a dense ensemble of nanorods and a single nanosphere.

- Kreibig, Vollmer, Optical properties of metal clusters, Springer1995
- Bohren, Huffmann, Absorption and scattering of light by small particles, Wiley 1983

Beating the diffraction limit

Enhancement of absorption and emission: Bringing effectively the far-field into the near-field

Plasmonic particle versus plasmonic cavity

Light-matter interaction at the nanoscale

Intro to plasmonics

Plasmonic nanogap

Quantum effects in nanogaps

Photoemission in nanogaps

Atomistic effects in field localization

Transport at optical frequencies

Exciton-plasmon coupling

Molecular electroluminescence in nanogaps

Localization and Field-enhancement

at nanogaps

Charge Transfer Plasmon

30

25

20

-15

10

5

Molecular spectroscopy: Excitons and vibrations

Fluorescence and Raman scattering

Coupling of cavity photons and matter excitations

Surface-enhanced Absorption, Scattering, Fluorescence

Surface-enhanced IR Absorption, Raman Scattering

Plasmon-Vibration Coupling

Plasmonic cavity assisting in spectroscopy: SERS

Xu et al. Phys Rev. Lett. (1999) Xu et al., Phys. Rev. E. 62, 4318 (2000) 60 nm Hot sites 200 nm topography D3 Intensity (200 counts per division) .C6 amplitude phase C5 Image obtained by R. Hillenbrand, 1400 200 400 600 800 1000 1200 1600 (Max Planck, Munich) Raman Shift [cm^{·1}]

The color of gaps

I. Romero, J. Aizpurua, G. W. Bryant and F. J. Garcia de Abajo, Optics Express 14, 9988 (2006)

Controlling antenna loading with metallic bridges

M. Schnell, A. García-Etxarri, J. Aizpurua, and R. Hillenbrand, Nature Phot. 3, 287-291 (2009)

Light-matter interaction at the nanoscale

- Intro to plasmonics
- Plasmonic nanogap
- Quantum effects in nanogaps
- Photoemission in nanogaps
- Atomistic effects in field localization
- Transport at optical frequencies
- **Exciton-plasmon coupling**

Molecular electroluminescence in nanogaps

(Sub)nanometric plasmonics

break junctions

electrochemistry

electro-migration

molecules

Experimental approaches provide nanometric and subnanometric gaps

Extreme plasmonic cavities

Top-down STM ultra high-vacuum Low temperature (Hefei, China)

Bottom-up Wet Chemistry Self-assembled monolayers (Cambridge, UK)

Nanophotonics beyond the nanoscale

Quantum Chemistry

Cavity QED

Classical confinement of light

Quantum Mechanical Model -QM-

The optical response of a matter block can be obtained by following the dynamical evolution of the electrons that compose it

Time-dependent Density Functional Theory (TDDFT).

Non-linear TDSE for Kohn-Sham Orbitals:

Potential is a function of the electronic density:

Density:

Short-step (δt) time propagation:

$$i\frac{d\Psi_{j}(t)}{dt} = H[n(t)]\Psi_{j}(t);$$
$$H = T + V[n(t)]; \quad T = -\frac{1}{2}\Delta$$

$$n(t) = 2\sum_{j=occ} \left| \Psi_j(t) \right|^2$$

$$\Psi_j(t+\delta t) = e^{-iH(t+\delta t/2)t} \Psi_j(t)$$

Tracing the response

In collaboration with C. Marinica and A. Borissov, ISMO, Orsay, France

@=2.55 eV Dipolar plasmon resonance

Quantum Mechanical Calculation -QM-

The quantum mechanical model can account for:

- (i) quantum size effect
- (ii) nonlocal interactions
- (iii) electron spill-out
- (iv) atomistic effects
- (v) electron tunneling

Quantum versus classical models (Red shift)

Single metallic wire of diameter D=9.8 nm TDDFT calculation within the Jellium model

T. Teperik, P. Nordlander, J. Aizpurua, A. Borisov, Phys. Rev. Lett. 110, 263901 (2013)

Small Na dimer (particles of 2nm)

Classical EM

Quantum Mechanical QM

Near-Field at the gap

Classical EM

Quantum Mechanical QM

Rubén Esteban et al., Nature Communications 3, 825 (2012)

Revealing the Quantum regime in tunnelling plasmonics

Quantum regime dominates for d_{QR} > 0.35nm

K. Savage et al. NATURE 491, 574 (2012)

Subnanometric plasmonics

Active quantum plasmonics

Control over separation

Rubén Esteban *et al.,* Nature Communications **3**, 825 (2012)

Control over an external bias

C. Marinica *et al*. Science Advances **1**, e1501095 (2015)

Active quantum plasmonics

C. Marinica et al. Science Advances 1, e1501095 (2015)
Light-matter interaction at the nanoscale

Intro to plasmonics

Plasmonic nanogap

Quantum effects in nanogaps

Photoemission in nanogaps

Atomistic effects in field localization

Transport at optical frequencies

Exciton-plasmon coupling

Molecular electroluminescence in nanogaps

Ultrafast photo-induced electron currents in plasmonic gaps

$$E(t) = \tilde{E}\cos(\omega t + \phi)e^{-t^2/\tau^2}$$

G. Aguirregabiria *et al*. Faraday Discussions **214**, 147-157 (2019)

Ultrafast photo-induced electron currents in plasmonic gaps

$$E(t) = \tilde{E}\cos(\omega t + \phi)e^{-t^2/\tau^2}$$

Ultrafast electron bursts follow the optical cycle

G. Aguirregabiria *et al*. Faraday Discussions **214**, 147-157 (2019)

Light-matter interaction at the nanoscale

Intro to plasmonics

Plasmonic nanogap

Quantum effects in nanogaps

Photoemission in nanogaps

Atomistic effects in field localization

Transport at optical frequencies

Exciton-plasmon coupling

Molecular electroluminescence in nanogaps

Beyond classical plasmonic confinement

Micron scale

Nanometric scale

Atomic scale

Single molecule Plasmon-Enhanced Raman in a STM cavity

Top-down STM ultra high-vacuum Low temperature (Hefei, China) R. Zhang *et al.* NATURE 598, 82-86 (2013)

Spectral Mapping (acquired at each pixel)

Experiment

Simulation

Chemical mapping of a single molecule by TERS

R. Zhang et al. NATURE 598, 82-86 (2013)

Beyond classical plasmonic confinement

Micron scale

Nanometric scale

 f
 f

 Atomic scale

Atomistic structure of a nanoparticle (TDDFT, Daniel Sánchez Portal, in San Sebastián, CFM)

M. Barbry et al. Nano Lett. 15, 3410-3419 (2015) and Supp. Inf.

Atomistic nanoplasmonics

M. Barbry et al. Nano Lett. 15, 3410-3419 (2015)

In resonance

Sub-nanometric localization of light

Effective Mode Volume V

$$\int_{V} \frac{|\mathbf{E}_{\mathrm{ind}}(x, y, z)|^2}{|\mathbf{E}_{\mathrm{ind}}^{\mathrm{max}}|^2} dV$$

M. Barbry et al. Nano Lett. 15, 3410-3419 (2015)

Spectral Mapping (acquired at each pixel)

Experiment

Simulation

Chemical mapping of a single molecule by TERS

R. Zhang et al. NATURE 598, 82-86 (2013)

Atomic-scale lightning rod effect: a classical view to a quantum effect

Mattin Urbieta et al. ACS Nano 12, 585-595 (2018)

Atomic relaxation around the gap

F. Marchesin et al. ACS Photonics 3, 269-277 (2016)

Single atoms can determine the optics

Optics and quantized transport are related

F. Marchesin et al. ACS Photonics 3, 269-277 (2016)

Light-matter interaction at the nanoscale

Intro to plasmonics

Plasmonic nanogap

Quantum effects in nanogaps

Photoemission in nanogaps

Atomistic effects in field localization

Transport at optical frequencies

Exciton-plasmon coupling

Molecular electroluminescence in nanogaps

Optical spectroscopy to probe molecular transport Optical fingerprints of high-frequency transport

F. Benz et al, Nano Lett. 15, 669 (2015)

Blue shift of the Bonding Dimer Plasmon (BDP)

Junction area A_J

Large Coulomb attraction

Blueshift depends on the charge screened:

Smaller Coulomb attraction as conductivity increases

Optical signature of molecular conductance at AC

(O. Pérez-González et al. Nano Letters 10, 3090 (2010))

trigger out optical features

See also O. Pérez-González, N. Zabala and J. Aizpurua, N. J. Phys. 13, 083013 (2011)

Molecular-shunted plasmonic nanojunctions

F. Benz et al., Nano Lett. 15, 669 (2015)

Experiment

60 nm spectral shift

Simulation

Molecular-shunted plasmonic nanojunctions

F. Benz et al., Nano Lett. 15, 669 (2015)

Spectral shift

Molecular-shunted plasmonic nanojunctions

F. Benz et al., Nano Lett. 15, 669 (2015)

Light-matter interaction at the nanoscale

Intro to plasmonics

Plasmonic nanogap

Quantum effects in nanogaps

Photoemission in nanogaps

Atomistic effects in field localization

Transport at optical frequencies

Exciton-plasmon coupling

Molecular electroluminescence in nanogaps

Coupling of photons and matter excitations

Plasmon-Vibration Coupling

Coupling of photons and matter excitations

Plasmon-Emitter Coupling

Coupling strength

 $\hbar q = -\mathbf{E} \cdot \boldsymbol{\mu}$

Purcell effect

Rabi oscillation

Coupling rate g

Control of the coherent interaction between a single molecule and a plasmonic nanocavity

Weak coupling regime

Exciton

Coupled system

Plasmonic resonator

Y. Zhang et al. Nature Communications. 8, 15225 (2017)

Controlling single molecule coupling in a plasmonic cavity

Y. Zhang et al. Nature Communications. 8, 15225 (2017)

Strong coupling of a single molecule in a plasmonic cavity

R. Chikkaraddy et al. Nature 535, 127-130 (2016)

Beyond the dipole approximation A Quantum Chemistry Aproach

$$\hbar g = -\mathbf{E} \cdot \mathbf{\mu}$$

Point-dipole model (PDM)

Beyond the dipole approximation A Quantum Chemistry Aproach

Point-dipole model (PDM)

Beyond the dipole approximation

T. Neuman et al., Nano Letters, 18, 2358-2367 (2018)

Point-dipole model (PDM)

Beyond the dipole approximation A Quantum Chemistry approach

Full-quantum model (FQM)

Beyond the dipole approximation A Quantum Chemistry Aproach

Quantum Model Point Dipole

Beyond the dipole approximation A Quantum Chemistry Aproach

-0.4

0.4

x(nm)

0.8

-0.8
Light-matter interaction at the nanoscale

Intro to plasmonics

Plasmonic nanogap

Quantum effects in nanogaps

Photoemission in nanogaps

Atomistic effects in field localization

Transport at optical frequencies

Exciton-plasmon coupling

Molecular electroluminescence in nanogaps

Decay of molecular excitations

Decay of molecular excitations

STM-induced electroluminescence

Detected efficiency of photon generation

$$\mathscr{I}_{\mathrm{det}} \propto \eta_{\mathrm{pump}}(\mathbf{r}) \cdot \eta_{\mathrm{em}}(\mathbf{r})$$

Pumping efficiency (electron tunneling) **Emission probability**

Photon emission from molecules in STM

$$\mathscr{I}_{\mathrm{det}} \propto \eta_{\mathrm{pump}}(\mathbf{r}) \cdot \eta_{\mathrm{em}}(\mathbf{r})$$

$$\mathscr{I}_{\mathrm{det}}^{\mathrm{Q}}(\mathbf{r}) \propto rac{N_{\mathrm{X}}(\mathbf{r})}{I_{\mathrm{H}}(\mathbf{r}) + I_{\mathrm{BG}}} \cdot |g_{\mathrm{Q}}(\mathbf{r})|^2$$

Pumping Emission

Photon emission from molecules in STM

Electron tunnelling

 $N_{\rm X} \propto |\psi_{\rm HOMO}|^2$

Identifying molecular configurations with light Tautomerization

to appear in Nat. Nanotech.; Collaboration with Guillaume Schull, Strasbourg

Collaborations

Theory of Nanophotonics Group

at the Center for Materials Physics, CSIC-UPV/EHU and DIPC, Donostia-San Sebastián

Javier Aizpurua

Rubén Esteban

Alberto Rivacoba

Yuan Zhang

Luca Bergamini

Nerea Zabala

Garikoitz Aguirregabiria

Antton Babaze

Tomas Neuman

Alvaro Nodar

Andrea Koneckna

Unai Muain

Mattin Urbieta

Carlos Maciel

Thank you for your attention