Nonmagnetic spin filter based on single molecular junction

Atindra Nath Pal

S. N. Bose National Centre for Basic Sciences, Kolkata

Nature Comm. 10, 5565 (2019)

SPICE-Molecular Electro-Opto-Spintronics Mainz, 15th – 18th October, 2019

S N Bose National Center for Basic Sciences, Kolkata

Today's Plan

- Introduction
- Mechanically Controllable Break Junction (MCBJ)
- Shot Noise: Detecting Spin transport
- Conductance and Shot noise in single molecular junction
- Results & Discussion
- Conclusion
- Group activities

- What is the **smallest component** that can control spin transport?
- Can we identify general concepts that will allow efficient control over spin transport at the atomic scale?

Motivation

Spintronics: manipulations of electronic spin currents for electronics and spin transport physics

The most general requirement of spintronics: high spin polarised current

Current spin polarisation:

$$P_I = \frac{I_{\uparrow} - I_{\downarrow}}{I_{\uparrow} + I_{\downarrow}}$$

Half Metals - Ideal candidate

NiMnSb band structure: de Groot, R. A., Mueller, F. M., van Engen, P. G. & Buschow, K. H. J. Phys. Rev. Lett. 50, 2024 (1983)

Ideal half metals are ideal materials for spintronics

Full spin polarization of the conducting electrons

Goal: molecular scale half metallicity

Enhanced magnetoresistance

Complete spin filtering in Ni - O - Ni junction

Vardimon, R; Klionsky, M; Tal, O; Nano Letters. **15**:3894-3898₆

D. Rakhmilevitch, S. Soumyajit. O. Bitton, L. Kronik and O. Tal, Nano Letters. 16:1741-1745 (2016)

Goal: molecular scale half metallicity

Vardimon, R; Klionsky, M; Tal, O; Nano Letters. **15**:3894-3898

7

Goal: molecular scale half metallicity

Formation of atomic and molecular junctions by mechanically controllable break junction

e.g.: T. Yelin, R. Vardimon, N. Kuritz, R. Korytar, A. Bagrets, F. Evers, L. Kronik and O. Tal Nano Letters 13, 1956 (2013)

Formation of atomic and molecular junctions by mechanically controllable break junction

e.g.: T. Yelin, R. Vardimon, N. Kuritz, R. Korytar, A. Bagrets, F. Evers, L. Kronik and O. Tal Nano Letters 13, 1956 (2013)

Characterization of metal – molecule – metal junction

Inelastic spectroscopy: vibrational modes

Log (frequency)

Ballistic Transport

Conduction Channels

Landauer Formula

Quantum of conductance

$$G_0 = \frac{2e^2}{h} = (12.9k\Omega)^{-1}$$

Electronic shot noise in point contact

Shot noise measurement and extraction of Fano factor

R. Vardiman et al, Phys. Rev. B. **88** 161404 (R) (2013).

M. Kumar et al., Phys. Rev. Lett. **108**, 146602 (2012).

Probing spin polarized conduction by shot noise

No spin polarized current (light brown area is forbidden)

$$S_I = 2eV \coth\left(\frac{eV}{2kT}\right)\frac{2e^2}{h}\sum_i \tau_i(1-\tau_i) + 4kT\frac{2e^2}{h}\sum_i \tau_i^2 \qquad G = \frac{2e^2}{h}\sum_i \tau_i$$

Fano Factor

 $F = \frac{\sum \tau_n (1 - \tau_n)}{\sum \tau_n (1 - \tau_n)}$

 $\sum \tau_n$

Probing spin polarized conduction by shot noise

Spin polarization through Shot noise

(d)

Suppression of Shot Noise near 0.7 anomaly – Spin origin

L. DiCarlo et al., PRL 97, 036810 (2006)

A. Burtzlaff et al., Phys. Rev. Lett. 114, 016602 (2015)

0.1

0.0

0.4

polarization

Conductance (G_o)

0.8

1.0

1.2

0.6

Diamagnetic electrodes and a magnetic molecule (S=3/2)

Diamagnetic electrodes and a magnetic molecule (S=3/2)

Stretching dependence of spin polarization Ag-vanadocene-Ag molecular junctions

>90% spin polarized current

One dominant spin conduction channel

Spin transmission probability close to 1

~ballistic spin conductance

Orientation of molecule inside the junction

Calculations:

A. Smogunov and D. Li, Université Paris-Saclay, France

L. Kronik and S. Sarkar, Weizmann Institute

Low and High Conducting states

Origin of close to 100% Spin filtering: Spin Polarized DFT

Quantum Interference: Charge transport

nature nanotechnology

LETTERS

PUBLISHED ONLINE: 25 MARCH 2012 | DOI: 10.1038/NNANO.2012.37

Observation of quantum interference in molecular charge transport

Constant M. Guédon¹¹, Hennie Valkenier²¹, Troels Markussen³, Kristian S. Thygesen³, Jan C. Hummelen² and Sense Jan van der Molen¹*

Destructive quantum interference

LETTERS nature nanotechnology

Mechanically controlled quantum interference in graphene break junctions

Sabina Caneva¹, Pascal Gehring¹, Victor M. García-Suárez^{2,3}, Amador García-Fuente², Davide Stefani¹, Ignacio J. Olavarria-Contreras¹, Jaime Ferrer^{2,3*}, Cees Dekker¹ and Herre S. J. van der Zant^{1*}

Electric-Field Control of Interfering Transport Pathways in a Single-Molecule Anthraquinone Transistor

Max Koole,[†] Jos M. Thijssen,[†] Hennie Valkenier,[‡] Jan C. Hummelen,[‡] and Herre S. J. van der Zant^{*/†}

[†]Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands [®]Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

LETTER

https://doi.org/10.1038/s41586-018-0197-9

bsacs.org/NanoLet

Comprehensive suppression of single-molecule conductance using destructive σ -interference

Marc H. Garner^{1,9}, Haixing H^{2,6,9}, Van Chen^{3,9}, Timothy A. Su^{4,7}, Zhichun Shangguan^{3,8}, Daniel W. Paley^{4,5}, Taifeng Liu³, Fay Ng⁴, Hexing Li³, Shengxiong Xiao³*, Colin Nuckolls^{3,4,8}, Latha Venkataraman^{2,4,8} & Gemma C. Solomon^{1,8}

Non monotonic stretching dependence

Conclusions

Ag-Vanadocene-Ag junction Conductance $\sim 1e^2/h$

Suppression of Shot Noise Spin filtering ~ 100%, Ballistic Spin channel

Spin dependent quantum interference

Acknowledgments

Oren Tal

Sudipto Chakraborti

Nadav Genossar

Lev Khmelnitsky

Ran Vardiman

Collaborators

Calculations:

A. Smogunov and D. Li, Université Paris-Saclay, France L. Kronik and S. Sarkar, Weizmann Institute

Ref. Nature Communication (Accepted for publication)

Current Research

- 2D materials: Graphene, MOS₂, WSe₂, Carbon Nanotube and nanowires.
- Low temperature Physics
- Topological Insulator
- Charge and spin transport
- Molecular electronics
- Noise Measurements
- Quantum Hall effect
- Bio electronics

Example of a Graphene Field Effect Transistor

Graphene

Room temperature MCBJ set up at SNBNCBS

guillotine

Biswajit Pabi

Atomic Gold junction

Gold-4,4 BiPyridine junction

Conductance Trace

Breaking and making process?

Biswajit Pabi & ANP (in preparation)

Group Members

Shubhrasish

Shubhadip Moulick

Mukherjee

Hybrid 2D devices

Biswajit Pabi Single Molecular transport

Rafiqul Alam

Transport in Topological Materials

Riju Pal

Spintronics with 2D materials

Post Doc Buddhadeb Pal

Superconductor-Ferromagnet junction

Visiting Fellow Aditya N Roychoudhury

Vortex dynamics

Tousif Project Student Taniya Basu Technical assistant Clean Room

IWPSD2019 TUTORIAL ANNOUNCEMENT

ICONSAT 2020

International Conference on Nano Science and Technology March 5-7, 2020 under the aegis of DST Nanomission, Govt. of India

Venue: Biswa Bangla Convention Centre, New Town, Kolkata