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There are a variety of approaches to study static
electric transport properties of moleculeselectric transport properties of molecules

frequently a questionable characterfrequently a questionable character 
of the top contact

is  frequently not precisely known M. A. Rampi et al., in Top Curr Chem (2011)



An alternative approach:An alternative approach:

Dynamics of the charge transferDynamics of the charge transfer
through the molecular framework

- a look at the same properties from a 
different perspective

- time-scale of Molecular Electronics



Experiment: X-ray photon as the top contact &
t A l t t t l

Experiment: X-ray photon as the top contact &
t A l t t t l
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Non-resonant (textbook) AugerNon-resonant (textbook) AugerNon-resonant (textbook) Auger
electron spectroscopy

Non-resonant (textbook) Auger
electron spectroscopy

emission of either an Auger 
electron (major channel for 
the light elements) or X ray
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it ti f
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2continium interband transition –
filling of the core hole
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2 & 3: decay of the excited state 
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(takes a while)



Resonant Auger electron spectroscopy (RAES)Resonant Auger electron spectroscopy (RAES)g p py ( )g p py ( )

A suitable functional group (nitrile in our case) is required 

excitation of
a core-level electron

into a bound state1
associated with

a specific functional group

1

followed by the decay of the excited state
which can occur by different wayswhich can occur by different ways 

b d idth X th i di id l t i it ti d d it tinarrow bandwidth X-rays: the individual steps, viz. excitation and de-excitation,  
should be considered as parts of a one-step process 



RAES: decay channels & ET probability  RAES: decay channels & ET probability  
 resonant + CT
 resonant
 CT PET spectrum decomposition
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Auger process
resonant                             excitation
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see e.g. Brühwiler et al., Rev. Mod. Phys. 74, 703 (2002)

the same final state as 
for non-resonant AES

350 360 370 380 390 400
Kinetic energy (eV)



Access to the femtosecond time domain Access to the femtosecond time domain 

ET =  (1-PET)/PET

“core hole clock“

ET  core (1 PET)/PET

core hole clock

core (N1s) = 6.4 fs
B. Kempgens et al. J. Phys. B 29, 5389 (1996)

- access to the sub-fs and fs time domains
0 5 <  < 120 150 fs

pg y , ( )

- 0.5 < ET < 120-150 fs

defined by a reliable spectra decomposition



The process involves individual moleculesThe process involves individual moleculesThe process involves individual molecules
within a 2D assembly

The process involves individual molecules
within a 2D assembly

e-e-

RAES t i th bl

- the number of the involved molecules (1) is precisely known 

- RAES spectrum is an average over the assembly



A basic system: alkyl chain (mol. wire):
nitrile substituted alkanethiolate SAMs on Au(111)

A basic system: alkyl chain (mol. wire):
nitrile substituted alkanethiolate SAMs on Au(111)nitrile-substituted alkanethiolate SAMs on Au(111) nitrile-substituted alkanethiolate SAMs on Au(111) 

tail group:
can be

target : 
molecular wire

NC

can be
resonantly
excited at

the N K-edge

(variable length)

the N K-edge

(unit)n

(CH2)n chain: n = 2 - 4 & 16
SH

the films should survive
exposure to ambient

SH

anchoring group:
attachment

P. Kao, MZ et al., J. Phys. Chem. C 114, 13766 (2010)

S. Neppl, P. Feulner, MZ et al., Chem. Phys. Lett. 447, 227 (2007)to the bottom
electrode (substrate)



An important requirement: well-defined filmsAn important requirement: well-defined filmsp qp q

chemical 
integrity &

homogenity 

heterogeneity,
ill-defined character

a detailed proof by advanced X-ray spectroscopy



Identity and integrity of the SAMs: HRXPS  Identity and integrity of the SAMs: HRXPS  
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Integrity and orientational order in the NC SAMs: 
X b ti t t th N K d

Integrity and orientational order in the NC SAMs: 
X b ti t t th N K dX-ray absorption spectroscopy at the N K-edge X-ray absorption spectroscopy at the N K-edge 

The degenerated (CN*)NEXAFS: N K-edge The degenerated (CN ) 
orbital, is used for the 
resonant excitation: 
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RAES - [N1s]*(CN) - spectra of the alkyl-based filmsRAES - [N1s]*(CN) - spectra of the alkyl-based films
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SP1: double holes in outer valence orbitals
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 s SP1: double holes in outer valence orbitals
SP2: holes in outer and inner valence orbitals

the ranges where the non resonant
C2CN

D
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- the ranges where the non-resonant 
(ET) contributions can be expected 

- no trace of ET in the RAES spectra
C2CN non-resonantA2 of NC-C16

- clear trace of ET in the RAES spectra
of NC-C2, NC-C3, & NC-C4

350 360 370 380 390 400
Kinetic energy (eV)

of NC C2, NC C3, & NC C4
- ET weight decreases with increasing n



Decomposition of the [N1s]*(CN) RAES spectraDecomposition of the [N1s]*(CN) RAES spectra

NC-C2 resonant
 non-resonant
resonant CNC16 Fit = 70%R+30%NRresonant CNC16
 best fit
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Charge transfer time for alkyl-based systemsCharge transfer time for alkyl-based systems

 = 0 e d - analogous
ET = core (1-PET)/PET

 = 0.93 per CH2 = 0.72 Å-180
100
120

s)
= 0 e d - ?

to the static conductance

- nearly identical to the 
static conductance value

20
40
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s (
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0

4,5

5,0 ln0 = 0.83  
(C-S-Au) = 2.3 fs
– high conductance

3 0
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long ET time even for the 
short chain - important

high conductance

2 3 4

2,5

3,0 short chain important 
implications for molecular 
electronics & photoelectron
spectroscopyNumber of the CH2 units spectroscopy

P. Kao, MZ et al., J. Phys. Chem. C 114, 13766 (2010)



An ultimate check of the approach:
ultrafast electron transfer to the substrate

An ultimate check of the approach:
ultrafast electron transfer to the substrateultrafast electron transfer to the substrateultrafast electron transfer to the substrate
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A. Guttentag, MZ et al., J. Phys. Chem. C 120, 26736 (2016) ; J. Am. Chem. Soc. 138, 15580 (2016)

Photon energy (eV) gy ( )



An ultimate check of the approach:
ultrafast electron transfer to the substrate
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Charge transfer dynamics 
in conjugated molecular wires

Charge transfer dynamics 
in conjugated molecular wiresin conjugated molecular wiresin conjugated molecular wires
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Splitting of the *(NC) resonance into two
t hi h b l ti l

Splitting of the *(NC) resonance into two
t hi h b l ti l

 

components which can be selectively
addressed by NEXAFS & RAES

components which can be selectively
addressed by NEXAFS & RAES

NEXAFS: N K-edge
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the degeneration of the 
(CN) orbital is lifted
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good agreement with the previous 
calculations and gas phase data20°-90°
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ns calculations and gas phase  data 
for benzonitrile

an upright orientation
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( )

an upright orientation
of the nitrile group

Photon energy (eV)
prev. calculations: Ragan et al. PRB 71, 165318 (2005)

gas phase data: Carniato et al. PRA 71, 022511 (2005)H. Hamoudi, MZ et al., Phys. Rev. Lett. 107, 027801 (2011)



Molecular-orbital-selective RAES spectra
(OPE representative for the OPh and OPh1 series as well)

Molecular-orbital-selective RAES spectra
(OPE representative for the OPh and OPh1 series as well)

- the ranges where 
the non-resonant
contributions can be[N1s] *
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Orbital-dependent ET dynamics –
ti l d t f th h

Orbital-dependent ET dynamics –
ti l d t f th han particular advantage of the approachan particular advantage of the approach
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Oligophenyl wire: ß(conjugated) = 0 28 Å-1
C-S-Au = 2.8 fs

Oligophenyl wire:   ß(conjugated)      = 0.28 Å 1

ß(non-conjugated) = 0.55 Å-1  close to the static value
The efficiency and rate of ET in molecular wires can be controlled y

by resonant injection of the charge carriers into specific MOs.
H. Hamoudi, MZ et al., Phys. Rev. Lett. 107, 027801 (2011)



Going back to the alkyl chain: looking at the Going back to the alkyl chain: looking at the 
degenerated [N1s]* resonance in detaildegenerated [N1s]* resonance in detail

Normal incidence (NI) 

2*100meV
~5°

NC-C2

Grazing incidence (NI)
GI

NI

5
90°

1*
399 400 401

Ph t ( V)

S. Neppl, P. Feulner, MZ et al., Chem. Phys. Lett. 447, 227 (2007)
F. Blobner, P. Feulner, M. Thoss, MZ et al., 
J. Phys. Chem. Lett. 3, 436 (2012)

Photon energy (eV)

The degeneration is lifted to some extent but the energy separation
between the 1* and 2*orbitals is ~100 meV only which is too small

to address them selectively by the energy selectionto address them selectively by the energy selection.

Can it be done by exploiting symmetry selection rules?



Exploiting symmetry selection rules 
rather than the photon energy tuning
Exploiting symmetry selection rules 
rather than the photon energy tuningrather than the photon energy tuningrather than the photon energy tuning

26 0 fs
2* slow26.0 fs

NI slow

11.7 fs 1*GI
1

fast

Th d diff i i l t d t th diff t t ti f th *The oserved difference in ET is related to the different extention of the 1* 
and 2* orbitals onto the alkane backbone and the anchoring sulfur atom.

The efficiency and rate of CT in molecular wires can be controlled 

F. Blobner, MZ et al., J. Phys. Chem. Lett. 3, 436 (2012)

y
by resonant injection of the charge carriers into specific MOs.



Acene backboneAcene backbone
Conflicting and hardly explainable 
results for the static conductance:

J = J0 e –d

 = 0.51 Å-1 (thiols & isocyanides)
can be proved

with our approach:

B. S. Kim, C. D. Frisbie, et al., JACS 128, 4970 (2006)

 = 0.5 Å-1 (thiols)

B. S. Kim, C. D. Frisbie, et al., JACS 133, 19864 (2011)

 = 0.2 Å-1 (dithiols)
, , , , ( )

is  affected

ideal coupling to
th “t l t d ”

is  affected 
by the coupling 

to the top 
electrode? the “top electrode” 

(photon)
electrode? 



The smaller  value suits better in the ET dynamics 
case – the effect of the coupling is verified

The smaller  value suits better in the ET dynamics 
case – the effect of the coupling is verified
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NC-PT can be hardly considered
as a true member of the acene

series 8 9 10 11 12 13 14
Molecular length (Å)

series

T. Wächter, MZ, et al., J. Phys. Chem. C 122, 4105 (2018)



Se as an alternative to S: a better anchor for ME? Se as an alternative to S: a better anchor for ME? 
Literature: controversial statements (poorly defined systemsLiterature: controversial statements (poorly defined systems, 

differences between the S- & Se-based films, contact problems?)

well-defined systems HRXPS: C 1s C 1swell-defined systems 
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J. Ossowski, MZ, et al. ACS Nano 9, 4508 (2015)

similar packing motif & molecular 
orientation; similar packing densities Binding energy (eV)



Strength of the anchoring: exchange experiments
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S versus Se: nearly identical ET times S versus Se: nearly identical ET times 

RAES: [N 1s]1* RAES: [N 1s] 3*
*

NEXAFS: N K-edge

no contact problems; individual molecules are addressed
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similar ET properties 

(in spite of the stronger bond to the substrate in the case of Se!)

analogous result for NC-AnthS & NC-AnthSe (JPCC 2018)
J. Ossowski, MZ, et al. ACS Nano 9, 4508 (2015)



Static SIMS: redistribution of the electron density 
between the adjacent bonds

Static SIMS: redistribution of the electron density 
between the adjacent bondsbetween the adjacent bondsbetween the adjacent bonds
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Effect of molecular dipoleEffect of molecular dipole
  experiment
  non-resonant
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T Wächter MZ et al J Phys Chem C 121 13777 (2017)

very similar to the value for the napthalene backbone (no dipole) – 24.1 fs
no perceptible effect of molecular dipole

T. Wächter, MZ et al., J. Phys. Chem. C 121, 13777 (2017)

confirmed by the dedicated experiments on other systems (not published yet)



Other functional groups for site-specific excitationOther functional groups for site-specific excitation
ETA+IET

- pyridil is well-suited for CHC on SAMs  
- perciptable traces of ET in RAES

- strongly electronegative group
- traces of RAES features in AES spectra

T. Wächter, MZ et al., J. Phys. Chem. C 118, 26049 (2014) T. Wächter, MZ et al., J. Phys. Chem. C 122, 12534 (2018) 

- reasonable ET- only the adjacent ring is involved



Pyridine versus nitrilePyridine versus nitrile

vs. vs.

9 fs 31.5 fs 19.2 fs 60 fs15 fs 43 fs

H. Hamoudi, MZ et al., Phys. Rev. Lett. 107, 027801 (2011)

T. Wächter, MZ et al., J. Phys. Chem. C 122, 12534 (2018) 



Inverse electron transportInverse electron transport
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The presence of the resonant features in the non-resonant spectra
suggests the inverse electron transfer.

Similar extent of these features – only the adjacent ring is involved. 



Take home messageTake home messageTake-home messageTake-home message
static conductance and ET dynamics are strongly related 

RAES-CHCRAES-CHC

fs time domain, individual molecules, ideal top contact, 

can be indeed considered as complementary to static conductance 

, , p ,
orbital-dependent ET

ResultsResults
- numerical data (dynamics, coupling, etc.)

ResultsResults

- effect of the anchoring group

- effect of the top electrode

- effect of molecular dipole, etc.
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