Ab-initio prediction of novel phases of transition metal oxides

Lilia Boeri,

Dipartimento di Fisica, Sapienza Universita' di Roma, Italy

Spice Workshop, Novel Electronic and Magnetic Phases in Correlated Spin-Orbit Coupled Oxides, Mainz, 15 Nov. 2019

Tomorrow's electronics: novel materials with improved functionalities.

Transition metal oxides: several emerging behaviors due to the interplay of competing energy scales: electrons (U,J,SOC), lattice $(\lambda), \ldots$

Can ab-initio calculations help guide experiment?

Tomorrow's electonics: novel materials with improved functionalities.

Transition metal oxides: several emerging behaviors due to the interplay of competing energy scales: electrons (U,J,SOC), lattice $(\lambda), \ldots$

Can ab-initio calculations help guide experiment?

- Ab-initio material prediction, what does it mean?
- An old puzzle: BaBiO₃
- Bismuthates @ High Pressure: General Trends
- Hunting the zoo of iridates: First surprises

Tomorrow's electonics: novel materials with improved functionalities.

Transition metal oxides: several emerging behaviors due to the interplay of competing energy scales: electrons (U,J,SOC), lattice $(\lambda), \ldots$

Can ab-initio calculations help guide experiment?

- Ab-initio material prediction, what does it mean?
- An old puzzle: BaBiO₃
- Bismuthates @ High Pressure: General Trends
- Hunting the zoo of iridates: First surprises

Novel TMO: Material Prediction

Methods for **crystal structure prediction** and **thermodynamics** can be used to predict phase diagrams and locate suitable ranges of composition, pressure and doping and identifying promising structures and functionalities...

Predicting phase diagrams... how does it work?

DESIGNING MATERIALS *AB-INITIO*...

Predicting Phase Diagrams: Convex hull construction

For a given pressure the stable stoichiometries lie on the convex hull.

Predicting Phase Diagrams: Convex hull construction

For a given pressure the stable stoichiometries lie on the convex hull.

High pressures often stabilize new stoichoimetries not seen at ambient pressure: how to predict the crystal structures of these new phases?

Predicting Phase Diagrams: Finding unknown structures

For a **given pressure** and **stoichoimetry**, the most stable crystal structure is the **global minimum** of the **energy** (enthalpy) **landscape**.

Predicting Phase Diagrams: Finding unknown structures

For a **given pressure** and **stoichoimetry**, the most stable crystal structure is the **global minimum** of the **energy** (enthalpy) **landscape**.

Why is it so complicated?

For V=10³ Å³, δ =0.5 Å, N=10, C= 1.6 10¹² configurations!!!!!

Predicting Phase Diagrams: Finding unknown structures

For a **given pressure** and **stoichoimetry**, the most stable crystal structure is the **global minimum** of the **energy** (enthalpy) **landscape**.

Why is it so complicated?

For V=10³ Å³, δ =0.5 Å, N=10, C= 1.6 10¹² configurations!!!!!

Practically impossible to scan the whole phase space!!!!

Predicting Phase Diagrams: Crystal structure prediction

Several **efficient** methods implemented to explore the energy surface: (ab-initio random search, minima hopping, metadynamics, evolutionary algorithms) – see Woodley & Catlow, Nat. *Mat.* 2008.

Example: Near Room-Temperature Superconductivity in high-P Hydrides

SH₃, A. P. Drozdov et al., Nature 2015 (prediction Duan et al, Sci Rep. 2014).

LaH₁₀, A. P. Drozdov et al., Nature 2019 (prediction F. Peng et al., PRL 2017).

A Perspective on Conventional High-Temperature Superconductors at High Pressure: Methods and Materials, J.A. Flores-Livas, L. Boeri, A. Sanna, G. Profeta, R. Arita, M. Eremets, Rep. Progr. Phys. 2019

How well does it work for (*transition metal) oxides*?

DESIGNING MATERIALS *AB-INITIO*...

Tomorrow's electonics: novel materials with improved functionalities.

Transition metal oxides: several emerging behaviors due to the interplay of competing energy scales: electrons (U,J,SOC), lattice $(\lambda), \ldots$

Can ab-initio calculations help guide experiment?

• Ab-initio material prediction, what does it mean?

• An old puzzle: BaBiO₃

Bismuthates @ High Pressure: General Trends

Hunting in the zoo of iridates: First surprises

- Undoped: 3D CDW distortion of the perovskite structure (breathing + tilting) due to Bi3+/Bi5+ charge disproportionation; insulating (Δ≈IeV)
- Doping (K/Pb) suppresses CDW and induces superconductivity, T_c < 30 K (*Cava et al.*, Nature 1988; *Hinks et al.*, Nature 1988).

- Undoped: 3D CDW distortion of the perovskite structure (breathing + tilting) due to Bi3+/Bi5+ charge disproportionation; insulating (Δ≈ I eV)
- Doping (K/Pb) suppresses CDW and induces superconductivity, T_c < 30 K (Cava et al., Nature 1988; Hinks et al., Nature 1988).
- **DFT** reproduces CDW distortion, but not the insulating state (O.K.Andersen/s group, 1988-91) (needs LDA+U or hybrids); hybrid functionals (HSE) reproduce CDW and its suppression upon doping (*C. Franchini, G. Kresse, and R. Podloucky, PRL 2009.*).
- **TH:** Origin of **superconductivity**: negative U? Phonons? (Meregalli & Savrasov, PRB 1998; Bazhirov, Louie, Cohen, PRB 2013); Phonons+ U?(Yin, Haule Kotliar, PRX 2013).

What happens with pressure?

Will pressure suppress the CDW distortion and induce superconductivity?

What happens with pressure?

Will pressure suppress the CDW distortion and induce superconductivity?

No EXP: High-pressure diagram: ab-initio evolutiornary crystal structure prediction (A. Smolyanyuk, L. Boeri, C. Franchini, PRB 2017).

What happens with pressure?

Will pressure suppress the CDW distortion and induce superconductivity? **NO**!

High pressures stabilized "**deformed**" structures, which cannot be simply obtained from the perovskite; all high-P structures are **INSULATING**.

- High pressures stabilized "deformed" structures, which cannot be simply obtained as a distortion of the perovskite (group/subgroup analysis doesn't work).
- All high-P structures are **INSULATING**.
- "Deformed" structures contain pairs of inequivalent (Bi3+/Bi5+) bismut atoms -> charge disproportionation.
- EXP confirmation: R. Martonak, et al., PRM I, 023601 (2017): Metadynamics + highpressure resistivity measurements: BaBiO₃ distorts and remains insulating up to 80 Gpa (EXP)!

Bismutates @ High Pressures: General Trends

- Charge disproportionation, insulating behavior and distorted structures are a common feature of AE bismutates at high pressure!
- Chemical pressure: the distorted phase occurs at lower P with smaller cation!

High-P distortions in Bismutates: Physical origin

- Volume: Deformed structures are more compact than perovskite ones
- Bader charge analysis: Deformed structures preserve charge disproportionation.
- The number of Bi-O bonds increases upon forming distorted structures
- The average Bi-O bond length is larger in deformed structures.

0.9

0.5

0.3

0.9

0.5

0.3

0.9

0.5

0.3

(e) 0.7

(e.) 70 (e.)

1(P)

II(D)

III(D)

· 0.7

Ap

Deformation permits to obtained more packed structures with optimal B—O bond-length!

What Next? Predicting new materials and functionalities...

DESIGNING MATERIALS *AB-INITIO*...

Tomorrow's electonics: novel materials with improved functionalities.

Transition metal oxides: several emerging behaviors due to the interplay of competing energy scales: electrons (U,J,SOC), lattice $(\lambda), \ldots$

Can ab-initio calculations help guide experiment?

• Ab-initio material prediction, what does it mean?

• An old puzzle: BaBiO₃

Bismuthates @ High Pressure: General Trends

Hunting in the zoo of iridates: First surprises

Hunting in the zoo of iridates: first surprises

Iridates Ternary convex hull of stability, *hunting* for promising phases...

A. Smolyanyuk, L. Boeri, unpublished

Hunting in the zoo of iridates: first surprises

Iridates Ternary convex hull of stability, *hunting* for promising phases...

A. Smolyanyuk, L. Boeri, unpublished

Hunting in the zoo of iridates: first surprises

IrO₂

IrO₂ bulk: rutile, insulating

IrO₂ 2D: several metastable structures, with Ir triangular lattice.
Formation enthalpy comparable to other 2D materials.
Wan-der-Waals bound, easily exfoliable.

A. Smolyanyuk, M. Aichhorn, I. Mazin, and L. Boeri, arXiv preprint arXiv:1907.01966 (2019).

Magnetism:

- Quasi-deg. 120 Neel and in-plane stripe.
- Strongly anisotropic magnetic interactions.
- Soft out-of-plane magnetic moment.

Electronic Structure:

Magnetism + SOC + U

weakly insulating (jeff=1/2 half-filled).Lattice Dynamics: Dynamically Stable

2D-IrO₂ synthesizable; Triangular Ir lattice with non-trivial magnetic properties.

See also R.D. Johnson et al., cond-mat/1908.04584

Novel Quantum and Functional Materials

Can *ab-initio* calculations help guide experiment in **transition metal oxides**?

Iridates

Ternary convex hull of stability, *hunting* for promising phases... Once promising composition have been identified, we can **zoom in** and **look for promising crystal structures/bonding environments**

Hunting for promising phases...

Once promising composition have been identified, we can **zoom in** and **look for promising crystal structures/bonding environments**

A. Smolyanyuk, L. Boeri, unpublished

In summary...

Can *ab-initio* calculations help guide experiment to find novel quantum and functional materials (transition metal oxides)?

• Ab-initio **material prediction**, what does it mean?

An old puzzle: BaBiO₃

"Ab initio prediction of the high-pressure phase diagram of BaBiO₃", A. Smolyanyuk, Lilia Boeri, and C. Franchini, Phys. Rev. B **96**, 035103 (2017).

Bismuthates @ High Pressure: General Trends

"Charge Disproportionation in the high-pressure phase diagram of bismuth oxides", A. Smolyanyuk, C. Franchini, L. Boeri, Phys. Rev. B **98**, 115158 (2018).

Hunting the zoo of iridates: First surprises

«*Ab-initio prediction of a two-dimensional variant of the iridate IrO₂»,* A. Smolyanyuk, M. Aichhorn, I.I. Mazin, and L. Boeri, cond-mat/1907.01966.

What next?

Novel ternary phases, high-P phase diagrams, ... **New Physics!!**

THANK YOU!!!!!

And thanks to...

I.I. Mazin, George Mason

A. Smolyanyuk, TU Graz

C. Franchini, Uni Wien & Bologna

ME!