

The European Commission's science and knowledge service

Joint Research Centre

Directorate for Nuclear Safety and Security

Advanced Nuclear Knowledge

Multipolar order and collective excitations in actinide dioxides

Roberto G. M. Caciuffo

Outline

- Ground state and long-range multipolar order in UO₂ and NpO₂
- Lattice dynamics and spin waves
- INS and IXS experiments
- Two-ions quadrupolar interactions
- Observation of dispersive quadrupole waves
- Avoided crossings and mixed modes

AnO₂ 1940's-1950's: structure and long-range order

- Fluorite-type structure (Rundle et al., Zachariasen, 1940's)
- Long-range order (Jones et al. 1952, Osborne & Westrum 1953)
- Large gap semiconductors (Willardson et al. 1956)

Commission

Magnetic Structure of UO₂

 Neutron diffraction confirms 1st order transition to an AF state in UO₂. (Henshaw & Brockhouse 1957)

• 1-k AF structure is proposed. (Willis & Taylor 1965; Frazer et al. 1965)

2-k AF structure and internal distortion of the oxygen cage (Faber & Lander 1976)

Magnetic Structure of UO₂

Correct magnetic structure proposed by Burlet et al. in 1986:

Type I, 3-k transverse structure

<001> propagation vector,

 $\mu_0 = 1.74 \; \mu_B$

$$\overrightarrow{\mu}_{n} \propto \sum_{j=1}^{j=3} \overrightarrow{m}_{k_{j}} \exp(\overrightarrow{i} \overrightarrow{k}_{j} \cdot \overrightarrow{R}_{n})$$

$$\vec{k_1} = (1, 0, 0)$$
 etc.

A: $\vec{m}_{100} = (0, 1, 0)$ etc. B: $\vec{m}_{100} = (0, 0, 1)$ etc.

Lattice dynamics of UO₂, inelastic neutron scattering

Dolling, Cowley & Wood, 1965; Cowley & Dolling, 1966 & 1968

J.W.L. Pang et al., PRL 110, 157401 (2013)

Spin waves in UO₂, inelastic neutron scattering

Lattice dynamics of NpO₂

Similar INS measurements have not been done for NpO₂ because of the size of available samples

 $NpO_2 \sim 1 \text{ mg}$ $780 \times 560 \times 250 \text{ } \mu\text{m}^3$

 $UO_2 \sim 99000 \text{ mg}$

Lattice dynamics in NpO₂ at 300K: inelastic x-ray scattering

P. Maldonado et al., PRB, 93, 144301 (2016)

Experimental data compared with phonon frequencies calculated by a "direct method", based on the quasi-harmonic approximation within a DFT framework for the electronic structure (GGA+U; U = 4 eV; J = 0.6 eV)

Linewidths: quasi-harmonic approximation + third-order anharmonic terms

Crystal Field excitations in UO₂

PHYSICAL REVIEW B

VOLUME 40, NUMBER 3

15 JULY 1989-II

5f-electron states in uranium dioxide investigated using high-resolution neutron spectroscopy

Commission

Uranium ions ground state in UO₂

The U⁴⁺ ground state in the paramagnetic phase of UO₂ is a triplet of Γ_5 symmetry, supporting 8 active degrees of freedom:

• 3 time-odd magnetic dipoles of Γ_4 symmetry

• 2 time-even electric quadrupoles of Γ_3 symmetry transforming as $3z^2-r^2$, x^2-y^2

• 3 time-even electric quadrupoles of Γ_5 symmetry transforming as xy, xz, yz

Crystal Field excitations in NpO₂

CF-phonons bound state

Raman Scattering at high T: bare CF excitation in NpO₂

European Commission

Active degrees of freedom in the Γ_8 Ground State of NpO₂

Time-reversal-even and time-reversal-odd active degrees of freedom up to rank-7

Long-range order of electric quadrupoles in UO₂

RXS experiments provide direct evidence for the ordering of electric quadrupole moments in UO_2 below T_N

Ordered ground state in UO₂

Transverse 3-k AF order of magnetic dipoles and Γ_5 e-quadrupoles

The U sublattice is simple cubic with

4 atoms in the base

Static 3-k J-T distortion of the O sublattice

NpO₂: the first example of hidden order

No ordered magnetism and no distortions detected

Longitudinal 3-k structure

Resonant X-Ray scattering

Ordered electric quadrupoles

Zero magnetic dipole moment

No crystal distortions:

Same atomic positions as in the CaF₂ structure, but different Point Symmetry

Rank-5 magnetic primary order parameter in NpO₂

E-quadrupole would split the Γ_8 quartet into two doublets: one low-E peak in INS spectrum

Collective excitations in AnO₂

Collective excitations in UO₂

In the ordered phase, the degeneracy of the ground state is removed.

Only one dipolar single-ion excitation is allowed

Collective excitations in UO₂

If only anisotropic magnetic exchange interactions were active, 4 propagating branches would be present (in addition to phonons):

4 U sites \rightarrow 4x1 = 4 excitations branches.

Along the [001] direction

2 degenerate acoustic and

2 degenerate optical spin branches.

UO₂ collective excitations below T_N

Inelastic neutron scattering

RC et al. PRB 59, 13892 (1999) PRB 72, 18441 (2005) PRB 84, 104409 (2011)

Collective excitations in UO₂

- Quadrupolar transitions (pseudospin flips by 2)

Magnetic dipole + electric quadrupole transitions:

4 U sites \rightarrow 4x(1+1) = 8 excitations branches

Only J_z and $Q_{3z^2-r^2}$ are frozen degrees of freedom

Coupled dynamics of spins, phonons and quadrupoles

Each low-T unit cell provides 60 dynamical variables

$$J_x, J_y, J_z$$
 Dipoles (3x 4 sublattice = 12)

 Q_{xy}, Q_{xz}, Q_{yz} Γ_5 Quadrupoles (3x 4 subl. = 12)

$$\Delta R_i$$
 Displacements (3x4x3 = 36)

Coupled dynamics of spins, phonons and quadrupoles

The microscopic Hamiltonian contains several terms:

$$H = H_{SS} + H_{QQ} + H_P + H_{ME}$$
 Spin-spin Quad-quad Bare Quadr-phonon superexc. Superexch. Phonons ME coupling

<u>The simplest possible model</u> allowing a satisfactory fit to experimental data:

$$H_{SS} = J\{S_{z}(1)S_{z}(2) + d[S_{x}(1)S_{x}(2) + S_{y}(1)S_{y}(2)]\}$$

$$(110) \text{ n.n. bond CUBIC ref. frame}$$

$$H_{QQ} = K^{SE}\{Q_{xy}^{S}(1)Q_{xy}^{S}(2) + d[Q_{yz}^{S}(1)Q_{yz}^{S}(2) + Q_{xz}^{S}(1)Q_{xz}^{S}(2)]\}$$

$$H_P \longrightarrow Rigid-ion model$$

The two normal modes of the cubic oxygen cage having Γ_5 symmetry

Lattice dynamics in UO₂

Retarded (frequency dependent) effective phonon-mediated quadrupole-quadrupole interactions:

Mixing of quadrupole and spin waves branches

- a) Q_{xy} and $Q_{x^2-y^2}$ fluctuate on site (1)
 - b) The ion in (2) feels a time-dependent quadrupolar field inducing off-resonant oscillations of Q_{xz} and Q_{yz}
 - c) As $Q_{xz,yz}$ are locked to $J_{x,y}$, a magnetic oscillation is induced in (2)

The $\Delta \widetilde{M}$ = 2 branch gets a magnetic character

Propagating electric quadrupole waves in UO₂

A whole excitation branch in UO₂ is associated with propagating quadrupolar fluctuations driven

jointly by magneto-elastic and superexchange multipolar interactions.

Commission

Avoided Crossings from spin- phonon- quadrupolar-modes interactions (yellow arrows)

the $Q_{xz,yz}$ quadrupolar operators couple phonons to the (M=-1 \rightarrow M = 0) excitation and give origin of the AC around 7 meV near $\xi = 0.45$

Mixed spin-phonon character is maximal at avoided crossing positions arising

$$|\Psi_1> \propto \frac{1}{\sqrt{2}}(SW + TA_1)$$
 $|\Psi_2> \propto \frac{1}{\sqrt{2}}(SW - TA_1)$

Inelastic neutron scattering experiments

 $\xi = 0.70$

10

9

Energy Transfer (meV)

Transverse constant-Q scans

$$Q = G + q = (1, 1, -1) + (0, 0, \xi)$$

Magnon-phonon avoided crossing at $\mathbf{q} = (0, 0, 0.45)$

Longitudinal scan reveals a transverse 50% phonon- 50% magnon mixed mode

$$I_{ph} \propto (\mathbf{Q \cdot e})^2 = 0$$

$$\Psi_1 > \propto \frac{1}{\sqrt{2}}(SW + TA_1)$$
 $|\Psi_2 > \propto \frac{1}{\sqrt{2}}(SW - TA_1)$

UO₂ High-resolution IXS: only phonons are visible

Experiments performed with Si(12 12 12) with $\Delta E=1.5 \text{ meV}$

IXS, UO₂ @ 10 K:

European Commission

UO₂ IXS:

Comparison with experiments: low-q region

Comparison with experiments: high-q region

Commission

Jahn-Teller vs. superexchange quadrupole interactions

Data on quadrupolar dynamics provide information on the nature of two-ion quadrupolar couplings (superexchange vs Jahn-Teller dilemma).

F-transform along Γ -X (q along z) of static Q-Q couplings arising from SE and JT interactions. " $\alpha\alpha$ " means an interaction involving a pair of yz quadrupoles etc..

At the X-point (wavevector for static Q-order) JT QQ coupling is vanishing: static Q-order stabilized by SE quadrupolar interactions

Conclusions

Mixed character of collective excitations in the ordered phase of UO₂ explained by phonon- and electron-mediated two-ions quadrupolar interactions.

Strong anti-crossing observed between TA and SO/QO modes over a wide q-range.

Quadrupolar waves can be detected by INS and IXS through the perturbation induced in the spin and vibrational dynamics.

Reduced phonon lifetimes along the (100) direction and anisotropy effects above T_N .

Phonons dispersion in NpO₂ measured by IXS.

Exotic triakontadipolar primary OP unveiled in NpO₂ by a combination of RXS and INS experiments.

Acknowledgements

G. Amoretti,

S. Carretta,

A. Hiess

N. Magnani

P. Maldonado

P. M. Oppeneer

UNIVERSITET

GRENOBLE

G. H. Lander