First principles calculations of the electric field gradient (EFG) tensors of Ba₂NaOsO₆, a Mott insulator with strong spin orbit coupling

Rong Cong, Ravindra Nanguneri, Brenda Rubenstein, Vesna F Mitrović Brown University

DMR-1608760, DMR-1905532 (V.F.M.) and DMR-1726213 (B.M.R.)

Abstract

• We present a DFT+U calculation of the electronic and magnetic properties of Ba₂NaOsO₆, a magnetic Mott insulator with strong spin orbit coupling (SOC), using electronic and magnetic results from NMR experiment.

• We found that the breaking local point symmetry (BLPS) phase corresponds to an orthorhombic static distortion of Na-O octahedral.

• We found a two-sublattice orbital ordering pattern revealed by distinct spin density and coexisting with canted ferromagnetic ordering.

- Fcc double perovskite with 5d¹ Os magnetic ion
- Magnetic mott insulator $U \sim 3.3 \text{ eV}$ $t \sim 0.05 \text{ eV}$
- FM $T_N \sim 6.8(3)$ K $\Theta_{CW} \sim -11$ K $\mu_{eff} \sim 0.6 \mu_B$
- FM[110] ~ $0.2\mu_B$
- $J_{eff} = 3/2$ entropy ~ Rln2

Erickson et al., PRL 99, 016404 (2007).

Spin-orbit coupled models

Witczak-Krempa et al., Annu. Rev. Condens. Matter Phys. v5, 57 (2014)

- NN antiferromagnetic exchange J
- NN ferromagnetic exchange J'
- NN electric quadrupole-quadrupole interaction V

Svoboda et al., arXiv: 1702. 03199v1 [cond-mat-str-el] (2017).

²³Na NMR Spectrum - Temperature evolution

14/11/2019

Lu et al., Nat. Commun. 8 (2017): 14407

Rong Cong - First principles calculations of the electric field gradient (EFG) tensors of Ba₂NaOsO₆, a Mott insulator with strong spin orbit coupling

Similar successive symmetry breaking in related materials

Hirai et al., JPSJ. 88, 064712 (2019)

- Ba₂MgReO₆ : fcc double perovskite with 5d¹ Re⁶⁺ magnetic ion
- FM $T_M \sim 18$ K, $T_q \sim 33$ K $\Theta_{CW} \sim -13.7$ K $\mu_{eff} \sim 0.68 \ \mu_B$
- FM[110] $\sim 0.3 \mu_B$

00

•
$$J_{eff} = 3/2$$
 entropy ~ $Rln4$

Electric field gradient (EFG) tensor $\nabla \vec{E}$

- Symmetric $\nabla \times \vec{E} = 0$ Traceless $\nabla \cdot \vec{E} = 0$
- Eigenvalues : $|V_{ZZ}| \ge |V_{YY}| \ge |V_{XX}|$
- Asymmetry factor : $\eta = (V_{XX} V_{YY})/V_{ZZ}$ $0 \le \eta \le 1$
- Eigenvectors : principal axes XYZ
- Diagonalization $\begin{pmatrix} -V_{ZZ}(1-\eta)/2 & 0 & 0 \\ 0 & -V_{ZZ}(1+\eta)/2 & 0 \\ 0 & 0 & V_{ZZ} \end{pmatrix}$
- Five irreducible elements : V_{ZZ} , η , principle axes

Electric quadrupolar interactions

- Hamiltonian $H_Q = \frac{h\nu_q}{2} \left(I_Z^2 \frac{I(I+1)}{3} + \frac{\eta}{6} (I_+^2 + I_-^2) \right)$ $\nu_q = \frac{(eQ)V_{ZZ}}{2h}$
- Quadrupolar splitting $\delta_q = \frac{1}{2}\nu_q(3\cos^2\theta 1 + \eta\sin^2\theta\cos^2\phi)$
- For nuclei with I=3/2 and $\eta = 0$

e b

Rong Cong - First principles calculations of the electric field gradient (EFG) tensors of Ba₂NaOsO₆, a Mott insulator with strong spin orbit coupling

Rotation pattern

Undistorted case

Condition	V _{zz}	$\eta u_{ m q}$	(kHz)
GGA	n/a	n/a	0
GGA+U	n/a	n/a	0
GGA+SOC+cFM	а	0.81	-0.5
GGA+SOC+cFM+U	а	0.30	-25

• SOC and cFM order is not enough to give rise to the EFG parameters. There has to be other sources (such as structural distortions) to create the non-zero EFG.

Distortion models

Orthorhombic distortion

6 pseudopotentials (PP):

PP1: Ba_{sv}+Na+Os+O PP2: Ba_{sv}+Na_{pv}+Os_{pv}+O_s PP3: Ba_{sv}+Na_{pv}+Os+O PP4: Ba_{sv}+Na+Os_{pv}+O PP5: Ba_{sv}+Na+Os+O_s PP6: Ba_{sv}+Na+Os_{pv}+O_s Na-O bond

 $c \longrightarrow c - \delta$

Q2 distortion mode

• GGA+cFM+SOC+U

δ _a (%)	δ_b (%)	δ _c (%)	Vzz	η	$\nu_{\mathbf{q}}(\mathbf{kHz})$		Method	Vzz	η	δ_q (kHz)
-0.54 0 0			С	1	-190			С	0.950	-211
	0.55	С	0.991	-190.5		GGA+cFM+U	а	0.852	205	
		а	0.818	209.5			-a	0.905	217	
			а	0.813	209.5			а	0.768	209
-0.525 0		0.52	а	0.981	183			С	0.984	186
	0		а	0.991	183			С	0.984	186
	U		а	0.795	202		UUATU	С	0.984	186
			а	0.790	203			С	0.984	186

14/11/2019 Rong Cong - First principles calculations of the electric field gradient (EFG) tensors of Ba₂NaOsO₆, a Mott insulator with strong spin orbit coupling

Other possibilities

δ_a (%)	δ _b (%)	δ _c (%)	Vzz	η	$\nu_{\mathbf{q}}(\mathbf{kHz})$
-0 53	Ο	0 55	С	0.974	-189.5
-0.00	0	0.00	С	0.982	-188.5
_0 55	Ο	0 53	С	0.778	209
-0.55	0	0.55	а	0.783	209.5
-0.56	0.56 0		-a	0.740	183
-0.50	0	0.50	-a	0.725	183
0 56	0	-0 56	а	0.853	-200
0.00	0	-0.50	а	0.847	-200
0 52	0	0 52	а	0.768	165.5
-0.52	0	0.52	а	0.760	166.5
0 52	Ο	-0.52	а	0.913	-182.5
0.02	U		а	0.911	-182

	Vzz	η	$\nu_{\mathbf{q}}(\mathbf{kHz})$
F	≈ (-a,-b) dia	0.359	22
	≈ (-a,-b) dia	0.349	23
	≈ [111] dia	0.340	15
	≈ [111] dia	0.346	15
F2	с	0.954	186
	с	0.954	186
	-а	0.948	191
	-а	0.948	191

14/11/2019 Rong Cong - First principles calculations of the electric field gradient (EFG) tensors of Ba₂NaOsO₆, a Mott insulator with strong spin orbit coupling

Sensitivity to distinct magnetic order

FM110	$ u_Q$ (kHz)	η	Vzz	
Α	185	0.853	а	
B Os1	190	0.750	а	
B Os2	-213	0.899	а	
F2 Os	-210	0.893	С	
Cubic Os	58	0.62	[110]	

e b

- EFG is insensitive to the precise nature of the magnetic order
- Evidence for the structural origin of a high-temperature shoulder observed in specific heat.

Response to external magnetic field

• Staggered local magnetic field and the second moments of the two triplet are constant in different magnetic fields, suggesting their non-magnetic origin.

Orbital and spin magnetic moment

cFM		$\phi(\vec{\mathbf{S}})$	$ \overrightarrow{\mathbf{L}} $	$\phi(\vec{\mathbf{L}})$	$ \overrightarrow{\mathbf{M}} $	$\phi(\vec{\mathbf{M}})$
A Os1	0.55	-86	0.44	91	0.12	-79
A Os2	0.55	74	0.43	-76	0.11	65
B Os1	0.61	-99	0.46	79	0.15	-86
B Os2	0.60	98	0.47	-80	0.13	95
F2 Os1	0.46	-75	0.34	100	0.12	-61
F2 Os2	0.47	64	0.35	-109	0.13	46
Cubic Os1	0.60	-83	0.47	95	0.13	-76
Cubic Os2	0.60	83	0.47	-95	0.13	76
FM [110]						
A Os	0.83	[110]	0.52	-[110]	0.31	[110]
B Os1	0.82	[110]	0.52	-[110]	0.30	[110]
B Os2	0.88	[110]	0.54	-[110	0.34	[110]
F2 Os	0.45	[110]	0.25	-[110]	0.20	[110]
Cubic Os	0.85	[110]	0.54	-[110]	0.31	[110]

• The average canting angle of 72 degree of Model A with cFM order is closest to the 67-degree canting angle derived from NMR.

Spin density

• Spin density $\langle \Delta^{\sigma}(\vec{r}) \rangle = Tr[\rho \sum \delta(\vec{r}_i - \vec{r})S_i^{\sigma}] \qquad \sigma = x, y, z$

 • Distinct spatial distribution of spin density on Os cites for cFM order suggests orbital ordering

Partial density of states

• Different selective occupation of t_{2g} orbitals for the two Os sublattices in the vicinity of Fermi energy.

Band structures

U (eV)	J (eV)	$ u_Q$ (kHz)	η	gap (eV)
3.3	0.5	194	0.866	0.06
4.0	0.5	194	0.873	0.244
4.5	0.5	193	0.863	0.388
5.0	0.5	190	0.852	0.556
3.3	0.6	191	0.819	0.04

14/11/2019 Rong Cong - First principles calculations of the electric field gradient (EFG) tensors of Ba₂NaOsO₆, a Mott insulator with strong spin orbit coupling

Summary

- We found that a local orthorhombic distortion where the Na-O bond elongate and compress along two crystalline axes respectively is the main driving force for the non-zero EFG of the breaking local point symmetry phase for Ba₂NaOsO₆.
- Assuming an experimentally determined canted ferromagnetic ordering, we predicted a possible two-sublattice orbital ordering of Os ions on alternating planes where the total magnetic moment resides. This is due to strong spin-orbit coupling.

Remaining questions

• Complexity of hyperfine coupling tensor that does not reflect atomic or magnetic symmetry.

• Reduced entropy of Rln2 across the magnetic transition, energy level splitting on the two Os sites.

Thanks!

14/11/2019 Rong Cong - First principles calculations of the electric field gradient (EFG) tensors of Ba₂NaOsO₆, a Mott insulator with strong spin orbit coupling