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Figure 3. Phase diagram of the classical HK±� model for T ! 0, with J = A sin ✓ cos', K = A sin ✓ sin', and � = A cos ✓  0 [32] on the (a)
hyperhoneycomb lattice [52] and (b) honeycomb lattice. Hatched regions in (a) denote genuine 3D phases with ordering wavevectors outside
the ac plane. The white dashed line indicates the regions in which the Luttinger-Tisza approach fails to satisfy the local length constraint and
a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).

ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.

We thank N. B. Perkins for enlightening discussions and E.
C. Andrade for collaboration on earlier related work. This re-
search was supported by the DFG through SFB 1143 (project
id 247310070) and the Würzburg-Dresden Cluster of Excel-
lence on Complexity and Topology in Quantum Matter –
ct.qmat (EXC 2147, project id 39085490).
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Figure 3. Phase diagram of the classical HK±� model for T ! 0, with J = A sin ✓ cos', K = A sin ✓ sin', and � = A cos ✓  0 [32] on the (a)
hyperhoneycomb lattice [52] and (b) honeycomb lattice. Hatched regions in (a) denote genuine 3D phases with ordering wavevectors outside
the ac plane. The white dashed line indicates the regions in which the Luttinger-Tisza approach fails to satisfy the local length constraint and
a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).
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rections to the uniform magnetization in the asymptotic high-
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equivalence for S < 1. This also means that classical phases
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respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
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netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
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Fig. 5: Left: The honeycomb Kitaev model with bond-directional couplings Kx, Ky and Kz. The
model can be analytically solved by introducing four flavors of Majorana fermions (indicated
by the yellow, blue, green and brown circles) and recombining them into a static Z2 gauge field
(indicated by the blue, green and brown ovals) and a remaining itinerant Majorana fermion
(yellow circle). Right: Phase diagram of the Kitaev model plotted for a plane Kx+Ky +Kz =

const. If one of the three couplings dominates, the system forms a gapped spin liquid indicated
by the blue shading. Around the point of isotropic coupling strengths Kx = Ky = Kz (indicated
by the red dot) a gapless spin liquid emerges, which can be best characterized as a (semi-)metal
of the Majorana fermions.

remain itinerant and form a gapless state – a Majorana metal – around the point of equal cou-
pling Kx = Ky = Kz. For the honeycomb lattice, this Majorana metal is a semi-metal with a
Dirac cone dispersion (well known from the analogous calculation of free complex fermions for
graphene-like electron systems). If one of the three couplings dominates, the system undergoes
a phase transition (e.g. for dominant Kz coupling along the line Kz = Kx +Ky) into a gapped
spin liquid. This latter state exhibits Abelian (Z2) topological order akin to the well-known
toric code model [30] and macroscopic entanglement. Applying a magnetic field along the 111-
direction, i.e. coupling the magnetic field to all three spin components, gaps out the gapless spin
liquid into an even more exotic spin liquid with non-Abelian (Ising-type) topological order [19].
The non-Abelian character of the latter is identical to that of a px+ ipy superconductor [31], the
Moore-Read state [32] proposed for the ⌫ = 5/2 fractional quantum Hall state, heterostructures
of superconductors and topological band insulators [33] or semicoductors [34], as well as that of
a network [35] of Majorana wires [36, 37] – all physical systems, which have gathered consid-
erable interest in the context of proposals for fault-taulerant topological quantum computation
[30, 38]. Despite this similarity, the search for Kitaev materials and a solid-state realization
of the Kitaev model is probably less driven by a potential application in quantum computing
technologies, but deeply inspired by the fundamental pursuit of (i) the synthesis of spin liquid
materials, (ii) the experimental discovery of Majorana fermions, and (iii) a direct experimental
probe of the underlying (Z2) gauge physics – such experimental evidence for gauge physics
in a condensed-matter context has long been lacking, despite theorists using the concept of Z2

gauge theories in the classical statistical mechanics of nematics [39] and to capture the physics
of fractionalization in quantum many-body systems [40, 41, 42] for decades.
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low temperatures around 3.5–5 K and in a particular win-
dow of magnetic field a thermal Hall signal corresponding 
to nth = 1/2 was measured in α-RuCl3, see figure 17. This 
observation appears tied to a field titled 45° or 60° away 
from the c∗ axis and emerges at field strengths of 9–10 T. A 
thermal Hall effect with nth = 1/2 is expected from a chi-
ral edge mode of Majorana fermions in the presence of a 
bulk gap, and this is indeed realized in the B phase of the 
Kitaev model in an applied field, as discussed in section 3.1. 
Consequently, the experiment of [39] has been interpreted 
as direct evidence for a field-induced topological spin-liquid 
phase with a Majorana edge mode in α-RuCl3. Subsequent 
theory work [136, 137] has argued that the expected quanti-
zation of κxy/T  [4] can survive even in the presence of strong 
phonon heat conductivity (i.e. small Hall angles). Further 
experiments are needed to determine the evolution of κxy at 
temperature below 3.5 K and to search for clear signatures 
of the quantum phase transition(s) bounding the topological 
phase.

5. Outlook

Spin–orbit-coupled magnets in general and Kitaev materials 
in particular constitute a highly active field of condensed-mat-
ter research. In this review article, we have summarized the 
current understanding of the behavior of Kitaev magnets in 
external magnetic fields, covering both theoretical and exper-
imental results. We have highlighted the strongly anisotropic 
magnetic responses, the occurrence of novel field-induced 
phases, and the possibility for topological magnon excitations.

Progress in the field can be expected along different ave-
nues: first, the synthesis and investigation of novel candidate 
materials will broaden the materials base. One interesting case 
in point is TbInO3, realizing a spin–orbit-coupled honeycomb 
magnet with no detectable magnetic order at low temper-
atures [138]. Recent suggestions for Kitaev materials also 
include YbCl3, which exhibits an interesting field response 
[139, 140]. Second, careful studies of low-temperature ther-
modynamic and transport properties as function of continuous 

field strength and angle are required to uncover the rich 
phenomenology expected on theoretical grounds. Third, the 
progress of numerical methods for two-dimensional spin sys-
tems, most notably variants of density matrix renormalization 
group approaches, will yield a more comprehensive picture of 
quantum phase diagrams in applied fields. Fourth, conceptual 
and field-theoretic ideas will help to understand the quantum 
phase transitions observed both in experiment and numerics. 
Together, this will pave the way to applications involving, e.g. 
emergent Majorana-fermion modes.
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Appendix. Spin-wave theory in the high-field phase

A.1. High-field limit

Spin-wave theory relies on a semiclassical expansion with 
the inverse spin magnitude 1/S serving as a formal control 
parameter, where S → ∞ corresponds to the classical limit. 
For S  =  1/2, this is in general not a reliable approach if strong 
frustration is present. However, for field strengths h that are 
much larger than the relevant exchange interactions, quantum 
fluctuations are suppressed for any fixed S, suggesting 1/h as 
an alternative control parameter of the semiclassical expan-
sion. Let us consider the HKΓ model, with an additional third-
neighbor Heisenberg interaction J3, in an external field h,

Figure 17. Transverse thermal conductivity of α-RuCl3, plotted as κxy/T , as function of magnetic field which is titled by an angle θ away 
from the c∗ axis towards the a axis. Over a range of fields κxy/T  is approximately quantized, corresponding to nth = 1/2, i.e. a single chiral 
Majorana edge mode, see text. Left: θ = 60◦, Right: θ = 45◦. Reprinted from [39], © 2018 Macmillan Publishers Limited, part of Springer 
Nature. All rights reserved.
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Magnetic susceptibility and heat capacity data [139] for Ba3IrTi2O9 show no magnetic ordering
down to 0.35 K in spite of a strong antiferromagnetic coupling as evidenced by a large Curie-
Weiss temperature ⇥CW ⇠ �130 K. The effective moment is theoretically argued to be a
spin-orbit entangled j = 1/2 moment (on the basis of ab initio calculations [144]), despite the
considerable suppression of the experimentally determined magnetic moment of 1.09 µB [139].

x

z y
ẑ ŷ

x̂ view along (111) view along (311)

ẑ ŷ

x̂

Fig. 12: Views of the triangular layer of IrO6 octahedra from two different perspectives.

The unconventional magnetism of spin-orbit entangled j = 1/2 moments on a triangular lattice
again arises from the presence of bond-directional exchange couplings. On a microscopic level,
it has been argued [141] that the arrangement of the IrO6 octahedra within the layers, depicted
in Fig. 12, fulfills the two necessary ingredients for Kitaev-type interactions. First, neighboring
octahedra exhibit parallel edges, which gives rise to two separate exchange paths for every pair
of iridium ions. As in the case of edge-sharing IrO6 octahedra, this leads to a destructive inter-
ference and subsequent suppression of the isotropic Heisenberg exchange [7, 9, 26]. Second,
there are three distinct exchange paths for the three principal bond directions of the triangular
lattice, with each cutting through different edges of the IrO6 octahedra. This results in a distinct
locking of the exchange easy axis [7, 9, 26] along the three principal lattice directions as illus-
trated in Fig. 12. Since the Ir layer is normal to the 111 direction (see the left panel in Fig. 12),
the strength of the bond-directional coupling is equivalent in all three directions. Ultimately,
this gives rise to the bond-directional exchange of a triangular Kitaev model. In total, these
microscopic considerations lead to a triangular Heisenberg-Kitaev model as the most elemen-
tary description for the magnetism in Ba3IrTi2O9. Ab initio calculations [144] complete this
picture by arguing that in addition a symmetric off-diagonal exchange � should be considered
along with the possible emergence of a Dzyaloshinskii-Moriya (DM) exchange term arising
from distortions in the oxygen octahedra, which break inversion symmetry about the Ir-Ir bond
center.
The prevalent feature of the magnetism of the triangular Heisenberg-Kitaev model is the emer-
gence of non-trivial spin textures [142, 141]. The Kitaev exchange destabilizes the 120� order
of the Heisenberg antiferromagnet and induces a lattice of Z2-vortices [142] whose spatial sep-
aration is inversely proportional to the strength of the Kitaev coupling (independent of its sign).
The resulting phase diagram of the Heisenberg-Kitaev model has been explored both in its clas-
sical [142] and quantum [141, 145, 146, 147] variants using a combination of analytical and
numerical techniques. A summary is given in Fig. 13.
Finally, we note that other non-trivial spin textures beyond the Z2-vortex crystal can be stabi-
lized by spin-orbit coupling effects. For instance, a Dzyaloshinskii-Moriya (DM) exchange also
destabilizes the 120� order of the Heisenberg antiferromagnet and instead favors the formation
of a skyrmion crystal in the presence of a magnetic field [148, 149].

triangular 
(Ba3IrxTi3-xO9, …)

2D:
… no (soluble) Kitaev limit
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Fig. 13: Phase diagram of the triangular Heisenberg-Kitaev model, reproduced from Ref. [141].

Returning to the family of Ba3IrxTi3�xO9 materials, it would be most intriguing to experimen-
tally establish the emergence of non-trivial spin textures in Ba3IrTi2O9. This, however, requires
high-quality single crystals (without the aforementioned Ir/Ti site inversion) that would allow
for inelastic neutron scattering experiments. The magnetism of the sister compound Ba3TiIr2O9

is likely dominated by the formation of dimers in the Iridium double-layer and is currently being
explored both theoretically and experimentally.

3.2 Other materials
Recently, a new family of hexagonal j = 1/2 iridium perovskites of the form Ba3M Ir2O9 with
M = (Sc, Y) has been experimentally explored [150, 151]. In contrast to the Ba3IrxTi3�xO9

compounds, the (average) iridium valence here is Ir4.5+. This possibly leads to a scenario
wherein the double-layer one has one effective spin-orbit entangled j = 1/2 moment per face-
sharing Ir2O9 bioctahedra. As argued above, the latter are coupled via three distinct parallel
(bi)octahedral edges and as such the effective j = 1/2 moments are likely subject to a bond-
directional exchange. While both Ba3ScIr2O9 and Ba3YIr2O9 have been reported to exhibit
magnetic ordering at around 10 K (Sc) and 4.5 K (Y), respectively, the closely related Ir4.5+-
compound Ba3InIr2O9 [140] does not exhibit any sign of magnetic ordering down to 250 mK
[152] and, thus, is a potential j = 1/2 spin liquid candidate system.
Another related spin liquid candidate material is the recently synthesized ruthenate Ba3ZnRu2O9

[153], in which a hexagonal lattice of Ru5+ dimers (with S = 3/2) forms in the double-layer
of face-sharing Ru2O9 bioctahedra. The absence of long-range magnetic order down to 37 mK
along with a linear specific heat [153] indicate the possible formation of a spin liquid in this ma-
terial, which would be remarkable given the rather large effective magnetic moment of S = 3/2.

4 Three-dimensional Kitaev materials
The exploration of three-dimensional Kitaev materials was kick-started with the independent,
but almost concurrent synthesis of two Li2IrO3 polymorphs in 2013 – �-Li2IrO3 in Takagi’s
group [100] and �-Li2IrO3 in the group of Analytis [101]. Both polymorphs realize truly
three-dimensional, but still tricoordinated sublattices of the iridium 5d5 ions, dubbed the hyper-
honeycomb and stripy-honeycomb, respectively. As such, these compounds are candidate ma-
terials for the realization of three-dimensional Kitaev physics, which we will briefly review in
the following before returning to the materials.

Heisenberg-Kitaev model:

[Becker et al. ’15] 
[Rousochatzakis et al. ’16] 

Review: [Trebst ’17]
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2
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Figure S1. Harmonic honeycomb lattice series H hNi, where N refers to the number of complete honeycomb rows along the c axis1,2. (a) N = 0
(hyperhoneycomb), (b) N = 1 (stripyhoneycomb), (c) N ! 1 (honeycomb), (d-f) building blocks for general N. x, y, and z bonds are marked
in red, green, and blue. The labels “±” refer to the signs of the � interaction on the di↵erent bonds.

(a) (b)

Figure S2. Signs of the � interaction on the di↵erent bonds in the
projected hyperhoneycomb-lattice (a) and stripyhoneycomb-lattice
(b) models. x, y, and z bonds are marked in red, green, and blue.
Dashed rectangles indicate the four-site (a) and eight-site (b) prim-
itive unit cells, respectively. The black and orange sites in (a) refer
to the unitary transformation that removes the sign structure as ex-
plained in the text.

ter become fourth-neighbor bonds. Similarly, third-neighbor
bonds (according to Euclidean distance) become either third-
neighbor or sixth-neighbor bonds upon projection. This is il-
lustrated in Fig. S3.

Of course, the quantum chemistry underlying the actual ex-
change couplings (direct exchange vs. superexchange etc.),
which in most cases also involves non-magnetic ions placed
in between the magnetic ones, may discriminate symmetry-
inequivalent bonds of the same Euclidean length. This physics

central site

nearest neighbor

2nd-nearest neighbor

3rd-nearest neighbor

⇥2

⇥2
⇥2

⇥2

Figure S3. Projection of nearest-, second-nearest-, and third-nearest-
neighbor interactions of an arbitrary central site on the hyperhoney-
comb lattice. Under the projection, nearest neighbors remain near-
est neighbors, while second-nearest (third-nearest) neighbors map to
second- and fourth-nearest (third- and sixth-) nearest neighbors on
the honeycomb lattice. “⇥2” indicates cases in which two hyperhon-
eycomb sites map to the same honeycomb sites.

is specific to each particular compound and requires ab-initio

consideration that are beyond the scope of this paper.

II. CLASSICAL PHASES AND PHASE DIAGRAMS

Here we describe the methods used to determine the classi-
cal phase diagrams shown in Figs. 2 and 3 of the main paper.
Due to the di↵erent nature of the expected phases we have
used di↵erent methods in the two cases.

β-Li2IrO3, … γ-Li2IrO3, … α-Li2IrO3, α-RuCl3, …
[Modic et al., ’14] 
[Kimchi et al. ’14]
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Figure 3. Phase diagram of the classical HK±� model for T ! 0, with J = A sin ✓ cos', K = A sin ✓ sin', and � = A cos ✓  0 [32] on the (a)
hyperhoneycomb lattice [52] and (b) honeycomb lattice. Hatched regions in (a) denote genuine 3D phases with ordering wavevectors outside
the ac plane. The white dashed line indicates the regions in which the Luttinger-Tisza approach fails to satisfy the local length constraint and
a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).

ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.

We thank N. B. Perkins for enlightening discussions and E.
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Figure 3. Phase diagram of the classical HK±� model for T ! 0, with J = A sin ✓ cos', K = A sin ✓ sin', and � = A cos ✓  0 [32] on the (a)
hyperhoneycomb lattice [52] and (b) honeycomb lattice. Hatched regions in (a) denote genuine 3D phases with ordering wavevectors outside
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a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).

ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.
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Figure 3. Phase diagram of the classical HK±� model for T ! 0, with J = A sin ✓ cos', K = A sin ✓ sin', and � = A cos ✓  0 [32] on the (a)
hyperhoneycomb lattice [52] and (b) honeycomb lattice. Hatched regions in (a) denote genuine 3D phases with ordering wavevectors outside
the ac plane. The white dashed line indicates the regions in which the Luttinger-Tisza approach fails to satisfy the local length constraint and
a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).

ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.

We thank N. B. Perkins for enlightening discussions and E.
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search was supported by the DFG through SFB 1143 (project
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b̂ ĉ SPa�

SPa�

SZx/y

ẑ
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Figure 3. Phase diagram of the classical HK±� model for T ! 0, with J = A sin ✓ cos', K = A sin ✓ sin', and � = A cos ✓  0 [32] on the (a)
hyperhoneycomb lattice [52] and (b) honeycomb lattice. Hatched regions in (a) denote genuine 3D phases with ordering wavevectors outside
the ac plane. The white dashed line indicates the regions in which the Luttinger-Tisza approach fails to satisfy the local length constraint and
a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).

ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.
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Figure 3. Phase diagram of the classical HK±� model for T ! 0, with J = A sin ✓ cos', K = A sin ✓ sin', and � = A cos ✓  0 [32] on the (a)
hyperhoneycomb lattice [52] and (b) honeycomb lattice. Hatched regions in (a) denote genuine 3D phases with ordering wavevectors outside
the ac plane. The white dashed line indicates the regions in which the Luttinger-Tisza approach fails to satisfy the local length constraint and
a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).

ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.
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ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.
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Figure 1. (a) Hyperhoneycomb lattice with magnetic skew-zigzag
state and (b) honeycomb lattice with zigzag state; both are equiv-
alent as explained in the text. (c) Hyperhoneycomb lattice viewed
from the crystallographic b̂ direction, illustrating its projection onto
an elongated honeycomb lattice. Colored balls indicate spin direc-
tions. (d) Brillouin zones of the hyperhoneycomb lattice (black) and
the elongated honeycomb lattice (red dashed). 3D states with or-
dering wavevectors in the ac plane can be transformed into equiva-
lent 2D states on the honeycomb lattice. The quarters of the front
hexagon (such as the green quadrangle) can be shifted with recipro-
cal lattice vectors to the ac plane and form, together with the ac-plane
cut of the first Brillouin zone, a rectangle (black dashed). The latter
becomes the 2D Brillouin zone of the elongated honeycomb lattice if
a four-site unit cell is chosen. All high-symmetry points shown are
quasi-2D.

honeycomb lattice. It is thus possible to construct states (e.g.,
skew-zigzag states) that do not break the translation symmetry
on the hyperhoneycomb lattice, although their 2D projections
break the honeycomb translation symmetry.

Further insight is gained in reciprocal space. All high-
symmetry points displayed in Fig. 1(d) have a vanishing com-
ponent along the direction of the reciprocal lattice vector b⇤
(up to reciprocal-lattice translations). States with ordering
wavevectors at these high-symmetry points thus exhibit no
modulation along the b axis in real space and are quasi-2D:
Their projection onto the ac plane yields states on the hon-
eycomb lattice with the exact same classical energy. This ap-
plies to all ordered phases in the nearest-neighbor Heisenberg-
Kitaev (HK) model in zero field. Upon the inclusion of other
symmetry-allowed interactions, as well as in a magnetic field,
Kitaev systems also stabilize multi-Q and incommensurate
states. We will show that even such more exotic states, in-
cluding the counterrotating spiral states that are realized in
the di↵erent Li2IrO3 polytypes, are quasi-2D. Moreover, the
3D–2D mapping discussed here for the hyperhoneycomb lat-
tice can be extended to the full harmonic honeycomb series,
for details see the supplemental material (SM) [28].

Heisenberg-Kitaev model in a magnetic field. To illustrate
the power of the advertised mapping, we consider the spin-S

HK Hamiltonian [11, 13] in a uniform magnetic field h,

HHK = J

X

hi ji

Si · S j + K

X

hi ji�

S
�
i
S
�
j
� h ·

X

i

Si, (1)

where � 2 {x, y, z} labels the three di↵erent types of bonds on
the lattice. The couplings are conventionally parameterized
as J = A cos' and K = 2A sin', where A > 0 is an overall
energy scale [32]. The 2D model on the honeycomb lattice
has been studied intensely, see Refs. 3, 33–35 for reviews. For
non-zero field, the classical phase diagram (i.e., for S ! 1)
of this and related models has been determined [25, 36–38],
and the S = 1/2 case has also been studied [39–48]. The 3D
model on the hyperhoneycomb lattice has been considered in
Refs. 26 and 49.

Here we have determined the phase diagram of the classical
HK model in a magnetic field using a combination of high-
field spin-wave theory and classical energy minimization. On
the hyperhoneycomb lattice, the number of possible geome-
tries of the magnetic unit cell drastically increases with its
size. For reasons of numerical feasibility and consistency, we
have restricted the numerical energy minimization in both the
2D and 3D cases to states with up to 12 sites in the magnetic
unit cell, but have included all possible unit-cell geometries;
for details see the SM [28]. Our findings on the honeycomb
lattice are consistent with the previous analysis [25, 50].

The result, comparing the hyperhoneycomb and honey-
comb cases for a field along the [111] / (x̂ + ŷ + ẑ)/

p
3

direction, is displayed in Fig. 2. The various phases are char-
acterized in the SM [28]. Remarkably, both phase diagrams
agree quantitatively, with the exception of the 3D spiral phase,
which appears only in the 3D case of panel (a). Inspecting the
individual phases, we see that all phases except the 3D spi-
ral have ordering wavevectors located in the ac plane, such
that 3D–2D mapping applies, whereas the 3D spiral phase has
Q = 2

3 Y, evading the mapping. The latter is hence a gen-
uine 3D phase, with a 12-site magnetic unit cell, and we have
illustrated its spin configuration in Fig. 2(c).

We have also determined the phase diagram of the hyper-
honeycomb model in a field along the [001] / ẑ direction, for
which all in-field ordered states are simply canted versions
of the zero-field orders, without any field-induced intermedi-
ate phases, in complete quantitative equivalence with the 2D
honeycomb-lattice result [25].

We note that early work on the hyperhoneycomb-HK model
in a magnetic field [49] missed the nontrivial field-induced
phases found here. We have explicitly checked that our novel
intermediate phases have lower energies than the canted skew-
zigzag and skew-stripy states suggested in Ref. 49.
� and other interactions. For actual Kitaev materials, it

has been shown that, in addition to nearest-neighbor Kitaev
and Heisenberg interactions, also symmetric o↵-diagonal in-
teractions, commonly dubbed � interactions, are important
[12, 37, 51–55]. To model �-Li2IrO3, we hence consider the

hyperhoneycomb 
(skew-zigzag)

… can be induced in β-Li2IrO3 by magnetic field 
[Ruiz et al. ’17]
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â
b̂ ĉ
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Figure 1. (a) Hyperhoneycomb lattice with magnetic skew-zigzag
state and (b) honeycomb lattice with zigzag state; both are equiv-
alent as explained in the text. (c) Hyperhoneycomb lattice viewed
from the crystallographic b̂ direction, illustrating its projection onto
an elongated honeycomb lattice. Colored balls indicate spin direc-
tions. (d) Brillouin zones of the hyperhoneycomb lattice (black) and
the elongated honeycomb lattice (red dashed). 3D states with or-
dering wavevectors in the ac plane can be transformed into equiva-
lent 2D states on the honeycomb lattice. The quarters of the front
hexagon (such as the green quadrangle) can be shifted with recipro-
cal lattice vectors to the ac plane and form, together with the ac-plane
cut of the first Brillouin zone, a rectangle (black dashed). The latter
becomes the 2D Brillouin zone of the elongated honeycomb lattice if
a four-site unit cell is chosen. All high-symmetry points shown are
quasi-2D.

honeycomb lattice. It is thus possible to construct states (e.g.,
skew-zigzag states) that do not break the translation symmetry
on the hyperhoneycomb lattice, although their 2D projections
break the honeycomb translation symmetry.

Further insight is gained in reciprocal space. All high-
symmetry points displayed in Fig. 1(d) have a vanishing com-
ponent along the direction of the reciprocal lattice vector b⇤
(up to reciprocal-lattice translations). States with ordering
wavevectors at these high-symmetry points thus exhibit no
modulation along the b axis in real space and are quasi-2D:
Their projection onto the ac plane yields states on the hon-
eycomb lattice with the exact same classical energy. This ap-
plies to all ordered phases in the nearest-neighbor Heisenberg-
Kitaev (HK) model in zero field. Upon the inclusion of other
symmetry-allowed interactions, as well as in a magnetic field,
Kitaev systems also stabilize multi-Q and incommensurate
states. We will show that even such more exotic states, in-
cluding the counterrotating spiral states that are realized in
the di↵erent Li2IrO3 polytypes, are quasi-2D. Moreover, the
3D–2D mapping discussed here for the hyperhoneycomb lat-
tice can be extended to the full harmonic honeycomb series,
for details see the supplemental material (SM) [28].

Heisenberg-Kitaev model in a magnetic field. To illustrate
the power of the advertised mapping, we consider the spin-S

HK Hamiltonian [11, 13] in a uniform magnetic field h,

HHK = J

X

hi ji

Si · S j + K

X

hi ji�

S
�
i
S
�
j
� h ·

X

i

Si, (1)

where � 2 {x, y, z} labels the three di↵erent types of bonds on
the lattice. The couplings are conventionally parameterized
as J = A cos' and K = 2A sin', where A > 0 is an overall
energy scale [32]. The 2D model on the honeycomb lattice
has been studied intensely, see Refs. 3, 33–35 for reviews. For
non-zero field, the classical phase diagram (i.e., for S ! 1)
of this and related models has been determined [25, 36–38],
and the S = 1/2 case has also been studied [39–48]. The 3D
model on the hyperhoneycomb lattice has been considered in
Refs. 26 and 49.

Here we have determined the phase diagram of the classical
HK model in a magnetic field using a combination of high-
field spin-wave theory and classical energy minimization. On
the hyperhoneycomb lattice, the number of possible geome-
tries of the magnetic unit cell drastically increases with its
size. For reasons of numerical feasibility and consistency, we
have restricted the numerical energy minimization in both the
2D and 3D cases to states with up to 12 sites in the magnetic
unit cell, but have included all possible unit-cell geometries;
for details see the SM [28]. Our findings on the honeycomb
lattice are consistent with the previous analysis [25, 50].

The result, comparing the hyperhoneycomb and honey-
comb cases for a field along the [111] / (x̂ + ŷ + ẑ)/

p
3

direction, is displayed in Fig. 2. The various phases are char-
acterized in the SM [28]. Remarkably, both phase diagrams
agree quantitatively, with the exception of the 3D spiral phase,
which appears only in the 3D case of panel (a). Inspecting the
individual phases, we see that all phases except the 3D spi-
ral have ordering wavevectors located in the ac plane, such
that 3D–2D mapping applies, whereas the 3D spiral phase has
Q = 2

3 Y, evading the mapping. The latter is hence a gen-
uine 3D phase, with a 12-site magnetic unit cell, and we have
illustrated its spin configuration in Fig. 2(c).

We have also determined the phase diagram of the hyper-
honeycomb model in a field along the [001] / ẑ direction, for
which all in-field ordered states are simply canted versions
of the zero-field orders, without any field-induced intermedi-
ate phases, in complete quantitative equivalence with the 2D
honeycomb-lattice result [25].

We note that early work on the hyperhoneycomb-HK model
in a magnetic field [49] missed the nontrivial field-induced
phases found here. We have explicitly checked that our novel
intermediate phases have lower energies than the canted skew-
zigzag and skew-stripy states suggested in Ref. 49.
� and other interactions. For actual Kitaev materials, it

has been shown that, in addition to nearest-neighbor Kitaev
and Heisenberg interactions, also symmetric o↵-diagonal in-
teractions, commonly dubbed � interactions, are important
[12, 37, 51–55]. To model �-Li2IrO3, we hence consider the
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ẑ
x̂
ŷ
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Figure 1. (a) Hyperhoneycomb lattice with magnetic skew-zigzag
state and (b) honeycomb lattice with zigzag state; both are equiv-
alent as explained in the text. (c) Hyperhoneycomb lattice viewed
from the crystallographic b̂ direction, illustrating its projection onto
an elongated honeycomb lattice. Colored balls indicate spin direc-
tions. (d) Brillouin zones of the hyperhoneycomb lattice (black) and
the elongated honeycomb lattice (red dashed). 3D states with or-
dering wavevectors in the ac plane can be transformed into equiva-
lent 2D states on the honeycomb lattice. The quarters of the front
hexagon (such as the green quadrangle) can be shifted with recipro-
cal lattice vectors to the ac plane and form, together with the ac-plane
cut of the first Brillouin zone, a rectangle (black dashed). The latter
becomes the 2D Brillouin zone of the elongated honeycomb lattice if
a four-site unit cell is chosen. All high-symmetry points shown are
quasi-2D.

honeycomb lattice. It is thus possible to construct states (e.g.,
skew-zigzag states) that do not break the translation symmetry
on the hyperhoneycomb lattice, although their 2D projections
break the honeycomb translation symmetry.

Further insight is gained in reciprocal space. All high-
symmetry points displayed in Fig. 1(d) have a vanishing com-
ponent along the direction of the reciprocal lattice vector b⇤
(up to reciprocal-lattice translations). States with ordering
wavevectors at these high-symmetry points thus exhibit no
modulation along the b axis in real space and are quasi-2D:
Their projection onto the ac plane yields states on the hon-
eycomb lattice with the exact same classical energy. This ap-
plies to all ordered phases in the nearest-neighbor Heisenberg-
Kitaev (HK) model in zero field. Upon the inclusion of other
symmetry-allowed interactions, as well as in a magnetic field,
Kitaev systems also stabilize multi-Q and incommensurate
states. We will show that even such more exotic states, in-
cluding the counterrotating spiral states that are realized in
the di↵erent Li2IrO3 polytypes, are quasi-2D. Moreover, the
3D–2D mapping discussed here for the hyperhoneycomb lat-
tice can be extended to the full harmonic honeycomb series,
for details see the supplemental material (SM) [28].

Heisenberg-Kitaev model in a magnetic field. To illustrate
the power of the advertised mapping, we consider the spin-S

HK Hamiltonian [11, 13] in a uniform magnetic field h,

HHK = J

X

hi ji

Si · S j + K

X

hi ji�

S
�
i
S
�
j
� h ·

X

i

Si, (1)

where � 2 {x, y, z} labels the three di↵erent types of bonds on
the lattice. The couplings are conventionally parameterized
as J = A cos' and K = 2A sin', where A > 0 is an overall
energy scale [32]. The 2D model on the honeycomb lattice
has been studied intensely, see Refs. 3, 33–35 for reviews. For
non-zero field, the classical phase diagram (i.e., for S ! 1)
of this and related models has been determined [25, 36–38],
and the S = 1/2 case has also been studied [39–48]. The 3D
model on the hyperhoneycomb lattice has been considered in
Refs. 26 and 49.

Here we have determined the phase diagram of the classical
HK model in a magnetic field using a combination of high-
field spin-wave theory and classical energy minimization. On
the hyperhoneycomb lattice, the number of possible geome-
tries of the magnetic unit cell drastically increases with its
size. For reasons of numerical feasibility and consistency, we
have restricted the numerical energy minimization in both the
2D and 3D cases to states with up to 12 sites in the magnetic
unit cell, but have included all possible unit-cell geometries;
for details see the SM [28]. Our findings on the honeycomb
lattice are consistent with the previous analysis [25, 50].

The result, comparing the hyperhoneycomb and honey-
comb cases for a field along the [111] / (x̂ + ŷ + ẑ)/

p
3

direction, is displayed in Fig. 2. The various phases are char-
acterized in the SM [28]. Remarkably, both phase diagrams
agree quantitatively, with the exception of the 3D spiral phase,
which appears only in the 3D case of panel (a). Inspecting the
individual phases, we see that all phases except the 3D spi-
ral have ordering wavevectors located in the ac plane, such
that 3D–2D mapping applies, whereas the 3D spiral phase has
Q = 2

3 Y, evading the mapping. The latter is hence a gen-
uine 3D phase, with a 12-site magnetic unit cell, and we have
illustrated its spin configuration in Fig. 2(c).

We have also determined the phase diagram of the hyper-
honeycomb model in a field along the [001] / ẑ direction, for
which all in-field ordered states are simply canted versions
of the zero-field orders, without any field-induced intermedi-
ate phases, in complete quantitative equivalence with the 2D
honeycomb-lattice result [25].

We note that early work on the hyperhoneycomb-HK model
in a magnetic field [49] missed the nontrivial field-induced
phases found here. We have explicitly checked that our novel
intermediate phases have lower energies than the canted skew-
zigzag and skew-stripy states suggested in Ref. 49.
� and other interactions. For actual Kitaev materials, it

has been shown that, in addition to nearest-neighbor Kitaev
and Heisenberg interactions, also symmetric o↵-diagonal in-
teractions, commonly dubbed � interactions, are important
[12, 37, 51–55]. To model �-Li2IrO3, we hence consider the
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Figure 1. (a) Hyperhoneycomb lattice with magnetic skew-zigzag
state and (b) honeycomb lattice with zigzag state; both are equiv-
alent as explained in the text. (c) Hyperhoneycomb lattice viewed
from the crystallographic b̂ direction, illustrating its projection onto
an elongated honeycomb lattice. Colored balls indicate spin direc-
tions. (d) Brillouin zones of the hyperhoneycomb lattice (black) and
the elongated honeycomb lattice (red dashed). 3D states with or-
dering wavevectors in the ac plane can be transformed into equiva-
lent 2D states on the honeycomb lattice. The quarters of the front
hexagon (such as the green quadrangle) can be shifted with recipro-
cal lattice vectors to the ac plane and form, together with the ac-plane
cut of the first Brillouin zone, a rectangle (black dashed). The latter
becomes the 2D Brillouin zone of the elongated honeycomb lattice if
a four-site unit cell is chosen. All high-symmetry points shown are
quasi-2D.

honeycomb lattice. It is thus possible to construct states (e.g.,
skew-zigzag states) that do not break the translation symmetry
on the hyperhoneycomb lattice, although their 2D projections
break the honeycomb translation symmetry.

Further insight is gained in reciprocal space. All high-
symmetry points displayed in Fig. 1(d) have a vanishing com-
ponent along the direction of the reciprocal lattice vector b⇤
(up to reciprocal-lattice translations). States with ordering
wavevectors at these high-symmetry points thus exhibit no
modulation along the b axis in real space and are quasi-2D:
Their projection onto the ac plane yields states on the hon-
eycomb lattice with the exact same classical energy. This ap-
plies to all ordered phases in the nearest-neighbor Heisenberg-
Kitaev (HK) model in zero field. Upon the inclusion of other
symmetry-allowed interactions, as well as in a magnetic field,
Kitaev systems also stabilize multi-Q and incommensurate
states. We will show that even such more exotic states, in-
cluding the counterrotating spiral states that are realized in
the di↵erent Li2IrO3 polytypes, are quasi-2D. Moreover, the
3D–2D mapping discussed here for the hyperhoneycomb lat-
tice can be extended to the full harmonic honeycomb series,
for details see the supplemental material (SM) [28].

Heisenberg-Kitaev model in a magnetic field. To illustrate
the power of the advertised mapping, we consider the spin-S

HK Hamiltonian [11, 13] in a uniform magnetic field h,

HHK = J

X

hi ji

Si · S j + K

X

hi ji�
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S
�
j
� h ·

X
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Si, (1)

where � 2 {x, y, z} labels the three di↵erent types of bonds on
the lattice. The couplings are conventionally parameterized
as J = A cos' and K = 2A sin', where A > 0 is an overall
energy scale [32]. The 2D model on the honeycomb lattice
has been studied intensely, see Refs. 3, 33–35 for reviews. For
non-zero field, the classical phase diagram (i.e., for S ! 1)
of this and related models has been determined [25, 36–38],
and the S = 1/2 case has also been studied [39–48]. The 3D
model on the hyperhoneycomb lattice has been considered in
Refs. 26 and 49.

Here we have determined the phase diagram of the classical
HK model in a magnetic field using a combination of high-
field spin-wave theory and classical energy minimization. On
the hyperhoneycomb lattice, the number of possible geome-
tries of the magnetic unit cell drastically increases with its
size. For reasons of numerical feasibility and consistency, we
have restricted the numerical energy minimization in both the
2D and 3D cases to states with up to 12 sites in the magnetic
unit cell, but have included all possible unit-cell geometries;
for details see the SM [28]. Our findings on the honeycomb
lattice are consistent with the previous analysis [25, 50].

The result, comparing the hyperhoneycomb and honey-
comb cases for a field along the [111] / (x̂ + ŷ + ẑ)/

p
3

direction, is displayed in Fig. 2. The various phases are char-
acterized in the SM [28]. Remarkably, both phase diagrams
agree quantitatively, with the exception of the 3D spiral phase,
which appears only in the 3D case of panel (a). Inspecting the
individual phases, we see that all phases except the 3D spi-
ral have ordering wavevectors located in the ac plane, such
that 3D–2D mapping applies, whereas the 3D spiral phase has
Q = 2

3 Y, evading the mapping. The latter is hence a gen-
uine 3D phase, with a 12-site magnetic unit cell, and we have
illustrated its spin configuration in Fig. 2(c).

We have also determined the phase diagram of the hyper-
honeycomb model in a field along the [001] / ẑ direction, for
which all in-field ordered states are simply canted versions
of the zero-field orders, without any field-induced intermedi-
ate phases, in complete quantitative equivalence with the 2D
honeycomb-lattice result [25].

We note that early work on the hyperhoneycomb-HK model
in a magnetic field [49] missed the nontrivial field-induced
phases found here. We have explicitly checked that our novel
intermediate phases have lower energies than the canted skew-
zigzag and skew-stripy states suggested in Ref. 49.
� and other interactions. For actual Kitaev materials, it

has been shown that, in addition to nearest-neighbor Kitaev
and Heisenberg interactions, also symmetric o↵-diagonal in-
teractions, commonly dubbed � interactions, are important
[12, 37, 51–55]. To model �-Li2IrO3, we hence consider the
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ẑ
x̂
ŷ
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y
x

(b)
z

yx

(c)

â
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Figure 1. (a) Hyperhoneycomb lattice with magnetic skew-zigzag
state and (b) honeycomb lattice with zigzag state; both are equiv-
alent as explained in the text. (c) Hyperhoneycomb lattice viewed
from the crystallographic b̂ direction, illustrating its projection onto
an elongated honeycomb lattice. Colored balls indicate spin direc-
tions. (d) Brillouin zones of the hyperhoneycomb lattice (black) and
the elongated honeycomb lattice (red dashed). 3D states with or-
dering wavevectors in the ac plane can be transformed into equiva-
lent 2D states on the honeycomb lattice. The quarters of the front
hexagon (such as the green quadrangle) can be shifted with recipro-
cal lattice vectors to the ac plane and form, together with the ac-plane
cut of the first Brillouin zone, a rectangle (black dashed). The latter
becomes the 2D Brillouin zone of the elongated honeycomb lattice if
a four-site unit cell is chosen. All high-symmetry points shown are
quasi-2D.

honeycomb lattice. It is thus possible to construct states (e.g.,
skew-zigzag states) that do not break the translation symmetry
on the hyperhoneycomb lattice, although their 2D projections
break the honeycomb translation symmetry.

Further insight is gained in reciprocal space. All high-
symmetry points displayed in Fig. 1(d) have a vanishing com-
ponent along the direction of the reciprocal lattice vector b⇤
(up to reciprocal-lattice translations). States with ordering
wavevectors at these high-symmetry points thus exhibit no
modulation along the b axis in real space and are quasi-2D:
Their projection onto the ac plane yields states on the hon-
eycomb lattice with the exact same classical energy. This ap-
plies to all ordered phases in the nearest-neighbor Heisenberg-
Kitaev (HK) model in zero field. Upon the inclusion of other
symmetry-allowed interactions, as well as in a magnetic field,
Kitaev systems also stabilize multi-Q and incommensurate
states. We will show that even such more exotic states, in-
cluding the counterrotating spiral states that are realized in
the di↵erent Li2IrO3 polytypes, are quasi-2D. Moreover, the
3D–2D mapping discussed here for the hyperhoneycomb lat-
tice can be extended to the full harmonic honeycomb series,
for details see the supplemental material (SM) [28].

Heisenberg-Kitaev model in a magnetic field. To illustrate
the power of the advertised mapping, we consider the spin-S

HK Hamiltonian [11, 13] in a uniform magnetic field h,

HHK = J

X
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where � 2 {x, y, z} labels the three di↵erent types of bonds on
the lattice. The couplings are conventionally parameterized
as J = A cos' and K = 2A sin', where A > 0 is an overall
energy scale [32]. The 2D model on the honeycomb lattice
has been studied intensely, see Refs. 3, 33–35 for reviews. For
non-zero field, the classical phase diagram (i.e., for S ! 1)
of this and related models has been determined [25, 36–38],
and the S = 1/2 case has also been studied [39–48]. The 3D
model on the hyperhoneycomb lattice has been considered in
Refs. 26 and 49.

Here we have determined the phase diagram of the classical
HK model in a magnetic field using a combination of high-
field spin-wave theory and classical energy minimization. On
the hyperhoneycomb lattice, the number of possible geome-
tries of the magnetic unit cell drastically increases with its
size. For reasons of numerical feasibility and consistency, we
have restricted the numerical energy minimization in both the
2D and 3D cases to states with up to 12 sites in the magnetic
unit cell, but have included all possible unit-cell geometries;
for details see the SM [28]. Our findings on the honeycomb
lattice are consistent with the previous analysis [25, 50].

The result, comparing the hyperhoneycomb and honey-
comb cases for a field along the [111] / (x̂ + ŷ + ẑ)/

p
3

direction, is displayed in Fig. 2. The various phases are char-
acterized in the SM [28]. Remarkably, both phase diagrams
agree quantitatively, with the exception of the 3D spiral phase,
which appears only in the 3D case of panel (a). Inspecting the
individual phases, we see that all phases except the 3D spi-
ral have ordering wavevectors located in the ac plane, such
that 3D–2D mapping applies, whereas the 3D spiral phase has
Q = 2

3 Y, evading the mapping. The latter is hence a gen-
uine 3D phase, with a 12-site magnetic unit cell, and we have
illustrated its spin configuration in Fig. 2(c).

We have also determined the phase diagram of the hyper-
honeycomb model in a field along the [001] / ẑ direction, for
which all in-field ordered states are simply canted versions
of the zero-field orders, without any field-induced intermedi-
ate phases, in complete quantitative equivalence with the 2D
honeycomb-lattice result [25].

We note that early work on the hyperhoneycomb-HK model
in a magnetic field [49] missed the nontrivial field-induced
phases found here. We have explicitly checked that our novel
intermediate phases have lower energies than the canted skew-
zigzag and skew-stripy states suggested in Ref. 49.
� and other interactions. For actual Kitaev materials, it

has been shown that, in addition to nearest-neighbor Kitaev
and Heisenberg interactions, also symmetric o↵-diagonal in-
teractions, commonly dubbed � interactions, are important
[12, 37, 51–55]. To model �-Li2IrO3, we hence consider the
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Figure 1. (a) Hyperhoneycomb lattice with magnetic skew-zigzag
state and (b) honeycomb lattice with zigzag state; both are equiv-
alent as explained in the text. (c) Hyperhoneycomb lattice viewed
from the crystallographic b̂ direction, illustrating its projection onto
an elongated honeycomb lattice. Colored balls indicate spin direc-
tions. (d) Brillouin zones of the hyperhoneycomb lattice (black) and
the elongated honeycomb lattice (red dashed). 3D states with or-
dering wavevectors in the ac plane can be transformed into equiva-
lent 2D states on the honeycomb lattice. The quarters of the front
hexagon (such as the green quadrangle) can be shifted with recipro-
cal lattice vectors to the ac plane and form, together with the ac-plane
cut of the first Brillouin zone, a rectangle (black dashed). The latter
becomes the 2D Brillouin zone of the elongated honeycomb lattice if
a four-site unit cell is chosen. All high-symmetry points shown are
quasi-2D.

honeycomb lattice. It is thus possible to construct states (e.g.,
skew-zigzag states) that do not break the translation symmetry
on the hyperhoneycomb lattice, although their 2D projections
break the honeycomb translation symmetry.

Further insight is gained in reciprocal space. All high-
symmetry points displayed in Fig. 1(d) have a vanishing com-
ponent along the direction of the reciprocal lattice vector b⇤
(up to reciprocal-lattice translations). States with ordering
wavevectors at these high-symmetry points thus exhibit no
modulation along the b axis in real space and are quasi-2D:
Their projection onto the ac plane yields states on the hon-
eycomb lattice with the exact same classical energy. This ap-
plies to all ordered phases in the nearest-neighbor Heisenberg-
Kitaev (HK) model in zero field. Upon the inclusion of other
symmetry-allowed interactions, as well as in a magnetic field,
Kitaev systems also stabilize multi-Q and incommensurate
states. We will show that even such more exotic states, in-
cluding the counterrotating spiral states that are realized in
the di↵erent Li2IrO3 polytypes, are quasi-2D. Moreover, the
3D–2D mapping discussed here for the hyperhoneycomb lat-
tice can be extended to the full harmonic honeycomb series,
for details see the supplemental material (SM) [28].

Heisenberg-Kitaev model in a magnetic field. To illustrate
the power of the advertised mapping, we consider the spin-S

HK Hamiltonian [11, 13] in a uniform magnetic field h,

HHK = J

X

hi ji
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Si, (1)

where � 2 {x, y, z} labels the three di↵erent types of bonds on
the lattice. The couplings are conventionally parameterized
as J = A cos' and K = 2A sin', where A > 0 is an overall
energy scale [32]. The 2D model on the honeycomb lattice
has been studied intensely, see Refs. 3, 33–35 for reviews. For
non-zero field, the classical phase diagram (i.e., for S ! 1)
of this and related models has been determined [25, 36–38],
and the S = 1/2 case has also been studied [39–48]. The 3D
model on the hyperhoneycomb lattice has been considered in
Refs. 26 and 49.

Here we have determined the phase diagram of the classical
HK model in a magnetic field using a combination of high-
field spin-wave theory and classical energy minimization. On
the hyperhoneycomb lattice, the number of possible geome-
tries of the magnetic unit cell drastically increases with its
size. For reasons of numerical feasibility and consistency, we
have restricted the numerical energy minimization in both the
2D and 3D cases to states with up to 12 sites in the magnetic
unit cell, but have included all possible unit-cell geometries;
for details see the SM [28]. Our findings on the honeycomb
lattice are consistent with the previous analysis [25, 50].

The result, comparing the hyperhoneycomb and honey-
comb cases for a field along the [111] / (x̂ + ŷ + ẑ)/

p
3

direction, is displayed in Fig. 2. The various phases are char-
acterized in the SM [28]. Remarkably, both phase diagrams
agree quantitatively, with the exception of the 3D spiral phase,
which appears only in the 3D case of panel (a). Inspecting the
individual phases, we see that all phases except the 3D spi-
ral have ordering wavevectors located in the ac plane, such
that 3D–2D mapping applies, whereas the 3D spiral phase has
Q = 2

3 Y, evading the mapping. The latter is hence a gen-
uine 3D phase, with a 12-site magnetic unit cell, and we have
illustrated its spin configuration in Fig. 2(c).

We have also determined the phase diagram of the hyper-
honeycomb model in a field along the [001] / ẑ direction, for
which all in-field ordered states are simply canted versions
of the zero-field orders, without any field-induced intermedi-
ate phases, in complete quantitative equivalence with the 2D
honeycomb-lattice result [25].

We note that early work on the hyperhoneycomb-HK model
in a magnetic field [49] missed the nontrivial field-induced
phases found here. We have explicitly checked that our novel
intermediate phases have lower energies than the canted skew-
zigzag and skew-stripy states suggested in Ref. 49.
� and other interactions. For actual Kitaev materials, it

has been shown that, in addition to nearest-neighbor Kitaev
and Heisenberg interactions, also symmetric o↵-diagonal in-
teractions, commonly dubbed � interactions, are important
[12, 37, 51–55]. To model �-Li2IrO3, we hence consider the
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Figure 1. (a) Hyperhoneycomb lattice with magnetic skew-zigzag
state and (b) honeycomb lattice with zigzag state; both are equiv-
alent as explained in the text. (c) Hyperhoneycomb lattice viewed
from the crystallographic b̂ direction, illustrating its projection onto
an elongated honeycomb lattice. Colored balls indicate spin direc-
tions. (d) Brillouin zones of the hyperhoneycomb lattice (black) and
the elongated honeycomb lattice (red dashed). 3D states with or-
dering wavevectors in the ac plane can be transformed into equiva-
lent 2D states on the honeycomb lattice. The quarters of the front
hexagon (such as the green quadrangle) can be shifted with recipro-
cal lattice vectors to the ac plane and form, together with the ac-plane
cut of the first Brillouin zone, a rectangle (black dashed). The latter
becomes the 2D Brillouin zone of the elongated honeycomb lattice if
a four-site unit cell is chosen. All high-symmetry points shown are
quasi-2D.

honeycomb lattice. It is thus possible to construct states (e.g.,
skew-zigzag states) that do not break the translation symmetry
on the hyperhoneycomb lattice, although their 2D projections
break the honeycomb translation symmetry.

Further insight is gained in reciprocal space. All high-
symmetry points displayed in Fig. 1(d) have a vanishing com-
ponent along the direction of the reciprocal lattice vector b⇤
(up to reciprocal-lattice translations). States with ordering
wavevectors at these high-symmetry points thus exhibit no
modulation along the b axis in real space and are quasi-2D:
Their projection onto the ac plane yields states on the hon-
eycomb lattice with the exact same classical energy. This ap-
plies to all ordered phases in the nearest-neighbor Heisenberg-
Kitaev (HK) model in zero field. Upon the inclusion of other
symmetry-allowed interactions, as well as in a magnetic field,
Kitaev systems also stabilize multi-Q and incommensurate
states. We will show that even such more exotic states, in-
cluding the counterrotating spiral states that are realized in
the di↵erent Li2IrO3 polytypes, are quasi-2D. Moreover, the
3D–2D mapping discussed here for the hyperhoneycomb lat-
tice can be extended to the full harmonic honeycomb series,
for details see the supplemental material (SM) [28].

Heisenberg-Kitaev model in a magnetic field. To illustrate
the power of the advertised mapping, we consider the spin-S

HK Hamiltonian [11, 13] in a uniform magnetic field h,

HHK = J

X

hi ji

Si · S j + K

X

hi ji�
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S
�
j
� h ·

X
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Si, (1)

where � 2 {x, y, z} labels the three di↵erent types of bonds on
the lattice. The couplings are conventionally parameterized
as J = A cos' and K = 2A sin', where A > 0 is an overall
energy scale [32]. The 2D model on the honeycomb lattice
has been studied intensely, see Refs. 3, 33–35 for reviews. For
non-zero field, the classical phase diagram (i.e., for S ! 1)
of this and related models has been determined [25, 36–38],
and the S = 1/2 case has also been studied [39–48]. The 3D
model on the hyperhoneycomb lattice has been considered in
Refs. 26 and 49.

Here we have determined the phase diagram of the classical
HK model in a magnetic field using a combination of high-
field spin-wave theory and classical energy minimization. On
the hyperhoneycomb lattice, the number of possible geome-
tries of the magnetic unit cell drastically increases with its
size. For reasons of numerical feasibility and consistency, we
have restricted the numerical energy minimization in both the
2D and 3D cases to states with up to 12 sites in the magnetic
unit cell, but have included all possible unit-cell geometries;
for details see the SM [28]. Our findings on the honeycomb
lattice are consistent with the previous analysis [25, 50].

The result, comparing the hyperhoneycomb and honey-
comb cases for a field along the [111] / (x̂ + ŷ + ẑ)/

p
3

direction, is displayed in Fig. 2. The various phases are char-
acterized in the SM [28]. Remarkably, both phase diagrams
agree quantitatively, with the exception of the 3D spiral phase,
which appears only in the 3D case of panel (a). Inspecting the
individual phases, we see that all phases except the 3D spi-
ral have ordering wavevectors located in the ac plane, such
that 3D–2D mapping applies, whereas the 3D spiral phase has
Q = 2

3 Y, evading the mapping. The latter is hence a gen-
uine 3D phase, with a 12-site magnetic unit cell, and we have
illustrated its spin configuration in Fig. 2(c).

We have also determined the phase diagram of the hyper-
honeycomb model in a field along the [001] / ẑ direction, for
which all in-field ordered states are simply canted versions
of the zero-field orders, without any field-induced intermedi-
ate phases, in complete quantitative equivalence with the 2D
honeycomb-lattice result [25].

We note that early work on the hyperhoneycomb-HK model
in a magnetic field [49] missed the nontrivial field-induced
phases found here. We have explicitly checked that our novel
intermediate phases have lower energies than the canted skew-
zigzag and skew-stripy states suggested in Ref. 49.
� and other interactions. For actual Kitaev materials, it

has been shown that, in addition to nearest-neighbor Kitaev
and Heisenberg interactions, also symmetric o↵-diagonal in-
teractions, commonly dubbed � interactions, are important
[12, 37, 51–55]. To model �-Li2IrO3, we hence consider the
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Figure 1. (a) Hyperhoneycomb lattice with magnetic skew-zigzag
state and (b) honeycomb lattice with zigzag state; both are equiv-
alent as explained in the text. (c) Hyperhoneycomb lattice viewed
from the crystallographic b̂ direction, illustrating its projection onto
an elongated honeycomb lattice. Colored balls indicate spin direc-
tions. (d) Brillouin zones of the hyperhoneycomb lattice (black) and
the elongated honeycomb lattice (red dashed). 3D states with or-
dering wavevectors in the ac plane can be transformed into equiva-
lent 2D states on the honeycomb lattice. The quarters of the front
hexagon (such as the green quadrangle) can be shifted with recipro-
cal lattice vectors to the ac plane and form, together with the ac-plane
cut of the first Brillouin zone, a rectangle (black dashed). The latter
becomes the 2D Brillouin zone of the elongated honeycomb lattice if
a four-site unit cell is chosen. All high-symmetry points shown are
quasi-2D.

honeycomb lattice. It is thus possible to construct states (e.g.,
skew-zigzag states) that do not break the translation symmetry
on the hyperhoneycomb lattice, although their 2D projections
break the honeycomb translation symmetry.

Further insight is gained in reciprocal space. All high-
symmetry points displayed in Fig. 1(d) have a vanishing com-
ponent along the direction of the reciprocal lattice vector b⇤
(up to reciprocal-lattice translations). States with ordering
wavevectors at these high-symmetry points thus exhibit no
modulation along the b axis in real space and are quasi-2D:
Their projection onto the ac plane yields states on the hon-
eycomb lattice with the exact same classical energy. This ap-
plies to all ordered phases in the nearest-neighbor Heisenberg-
Kitaev (HK) model in zero field. Upon the inclusion of other
symmetry-allowed interactions, as well as in a magnetic field,
Kitaev systems also stabilize multi-Q and incommensurate
states. We will show that even such more exotic states, in-
cluding the counterrotating spiral states that are realized in
the di↵erent Li2IrO3 polytypes, are quasi-2D. Moreover, the
3D–2D mapping discussed here for the hyperhoneycomb lat-
tice can be extended to the full harmonic honeycomb series,
for details see the supplemental material (SM) [28].

Heisenberg-Kitaev model in a magnetic field. To illustrate
the power of the advertised mapping, we consider the spin-S

HK Hamiltonian [11, 13] in a uniform magnetic field h,

HHK = J

X

hi ji

Si · S j + K
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S
�
j
� h ·

X
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Si, (1)

where � 2 {x, y, z} labels the three di↵erent types of bonds on
the lattice. The couplings are conventionally parameterized
as J = A cos' and K = 2A sin', where A > 0 is an overall
energy scale [32]. The 2D model on the honeycomb lattice
has been studied intensely, see Refs. 3, 33–35 for reviews. For
non-zero field, the classical phase diagram (i.e., for S ! 1)
of this and related models has been determined [25, 36–38],
and the S = 1/2 case has also been studied [39–48]. The 3D
model on the hyperhoneycomb lattice has been considered in
Refs. 26 and 49.

Here we have determined the phase diagram of the classical
HK model in a magnetic field using a combination of high-
field spin-wave theory and classical energy minimization. On
the hyperhoneycomb lattice, the number of possible geome-
tries of the magnetic unit cell drastically increases with its
size. For reasons of numerical feasibility and consistency, we
have restricted the numerical energy minimization in both the
2D and 3D cases to states with up to 12 sites in the magnetic
unit cell, but have included all possible unit-cell geometries;
for details see the SM [28]. Our findings on the honeycomb
lattice are consistent with the previous analysis [25, 50].

The result, comparing the hyperhoneycomb and honey-
comb cases for a field along the [111] / (x̂ + ŷ + ẑ)/

p
3

direction, is displayed in Fig. 2. The various phases are char-
acterized in the SM [28]. Remarkably, both phase diagrams
agree quantitatively, with the exception of the 3D spiral phase,
which appears only in the 3D case of panel (a). Inspecting the
individual phases, we see that all phases except the 3D spi-
ral have ordering wavevectors located in the ac plane, such
that 3D–2D mapping applies, whereas the 3D spiral phase has
Q = 2

3 Y, evading the mapping. The latter is hence a gen-
uine 3D phase, with a 12-site magnetic unit cell, and we have
illustrated its spin configuration in Fig. 2(c).

We have also determined the phase diagram of the hyper-
honeycomb model in a field along the [001] / ẑ direction, for
which all in-field ordered states are simply canted versions
of the zero-field orders, without any field-induced intermedi-
ate phases, in complete quantitative equivalence with the 2D
honeycomb-lattice result [25].

We note that early work on the hyperhoneycomb-HK model
in a magnetic field [49] missed the nontrivial field-induced
phases found here. We have explicitly checked that our novel
intermediate phases have lower energies than the canted skew-
zigzag and skew-stripy states suggested in Ref. 49.
� and other interactions. For actual Kitaev materials, it

has been shown that, in addition to nearest-neighbor Kitaev
and Heisenberg interactions, also symmetric o↵-diagonal in-
teractions, commonly dubbed � interactions, are important
[12, 37, 51–55]. To model �-Li2IrO3, we hence consider the
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ĉ⇤

Y0

(a)

z
y0 x0

ẑ
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Figure 1. (a) Hyperhoneycomb lattice with magnetic skew-zigzag
state and (b) honeycomb lattice with zigzag state; both are equiv-
alent as explained in the text. (c) Hyperhoneycomb lattice viewed
from the crystallographic b̂ direction, illustrating its projection onto
an elongated honeycomb lattice. Colored balls indicate spin direc-
tions. (d) Brillouin zones of the hyperhoneycomb lattice (black) and
the elongated honeycomb lattice (red dashed). 3D states with or-
dering wavevectors in the ac plane can be transformed into equiva-
lent 2D states on the honeycomb lattice. The quarters of the front
hexagon (such as the green quadrangle) can be shifted with recipro-
cal lattice vectors to the ac plane and form, together with the ac-plane
cut of the first Brillouin zone, a rectangle (black dashed). The latter
becomes the 2D Brillouin zone of the elongated honeycomb lattice if
a four-site unit cell is chosen. All high-symmetry points shown are
quasi-2D.

honeycomb lattice. It is thus possible to construct states (e.g.,
skew-zigzag states) that do not break the translation symmetry
on the hyperhoneycomb lattice, although their 2D projections
break the honeycomb translation symmetry.

Further insight is gained in reciprocal space. All high-
symmetry points displayed in Fig. 1(d) have a vanishing com-
ponent along the direction of the reciprocal lattice vector b⇤
(up to reciprocal-lattice translations). States with ordering
wavevectors at these high-symmetry points thus exhibit no
modulation along the b axis in real space and are quasi-2D:
Their projection onto the ac plane yields states on the hon-
eycomb lattice with the exact same classical energy. This ap-
plies to all ordered phases in the nearest-neighbor Heisenberg-
Kitaev (HK) model in zero field. Upon the inclusion of other
symmetry-allowed interactions, as well as in a magnetic field,
Kitaev systems also stabilize multi-Q and incommensurate
states. We will show that even such more exotic states, in-
cluding the counterrotating spiral states that are realized in
the di↵erent Li2IrO3 polytypes, are quasi-2D. Moreover, the
3D–2D mapping discussed here for the hyperhoneycomb lat-
tice can be extended to the full harmonic honeycomb series,
for details see the supplemental material (SM) [28].

Heisenberg-Kitaev model in a magnetic field. To illustrate
the power of the advertised mapping, we consider the spin-S

HK Hamiltonian [11, 13] in a uniform magnetic field h,

HHK = J

X

hi ji

Si · S j + K

X
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S
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� h ·
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Si, (1)

where � 2 {x, y, z} labels the three di↵erent types of bonds on
the lattice. The couplings are conventionally parameterized
as J = A cos' and K = 2A sin', where A > 0 is an overall
energy scale [32]. The 2D model on the honeycomb lattice
has been studied intensely, see Refs. 3, 33–35 for reviews. For
non-zero field, the classical phase diagram (i.e., for S ! 1)
of this and related models has been determined [25, 36–38],
and the S = 1/2 case has also been studied [39–48]. The 3D
model on the hyperhoneycomb lattice has been considered in
Refs. 26 and 49.

Here we have determined the phase diagram of the classical
HK model in a magnetic field using a combination of high-
field spin-wave theory and classical energy minimization. On
the hyperhoneycomb lattice, the number of possible geome-
tries of the magnetic unit cell drastically increases with its
size. For reasons of numerical feasibility and consistency, we
have restricted the numerical energy minimization in both the
2D and 3D cases to states with up to 12 sites in the magnetic
unit cell, but have included all possible unit-cell geometries;
for details see the SM [28]. Our findings on the honeycomb
lattice are consistent with the previous analysis [25, 50].

The result, comparing the hyperhoneycomb and honey-
comb cases for a field along the [111] / (x̂ + ŷ + ẑ)/

p
3

direction, is displayed in Fig. 2. The various phases are char-
acterized in the SM [28]. Remarkably, both phase diagrams
agree quantitatively, with the exception of the 3D spiral phase,
which appears only in the 3D case of panel (a). Inspecting the
individual phases, we see that all phases except the 3D spi-
ral have ordering wavevectors located in the ac plane, such
that 3D–2D mapping applies, whereas the 3D spiral phase has
Q = 2

3 Y, evading the mapping. The latter is hence a gen-
uine 3D phase, with a 12-site magnetic unit cell, and we have
illustrated its spin configuration in Fig. 2(c).

We have also determined the phase diagram of the hyper-
honeycomb model in a field along the [001] / ẑ direction, for
which all in-field ordered states are simply canted versions
of the zero-field orders, without any field-induced intermedi-
ate phases, in complete quantitative equivalence with the 2D
honeycomb-lattice result [25].

We note that early work on the hyperhoneycomb-HK model
in a magnetic field [49] missed the nontrivial field-induced
phases found here. We have explicitly checked that our novel
intermediate phases have lower energies than the canted skew-
zigzag and skew-stripy states suggested in Ref. 49.
� and other interactions. For actual Kitaev materials, it

has been shown that, in addition to nearest-neighbor Kitaev
and Heisenberg interactions, also symmetric o↵-diagonal in-
teractions, commonly dubbed � interactions, are important
[12, 37, 51–55]. To model �-Li2IrO3, we hence consider the
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ŷ

â
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Figure 1. (a) Hyperhoneycomb lattice with magnetic skew-zigzag
state and (b) honeycomb lattice with zigzag state; both are equiv-
alent as explained in the text. (c) Hyperhoneycomb lattice viewed
from the crystallographic b̂ direction, illustrating its projection onto
an elongated honeycomb lattice. Colored balls indicate spin direc-
tions. (d) Brillouin zones of the hyperhoneycomb lattice (black) and
the elongated honeycomb lattice (red dashed). 3D states with or-
dering wavevectors in the ac plane can be transformed into equiva-
lent 2D states on the honeycomb lattice. The quarters of the front
hexagon (such as the green quadrangle) can be shifted with recipro-
cal lattice vectors to the ac plane and form, together with the ac-plane
cut of the first Brillouin zone, a rectangle (black dashed). The latter
becomes the 2D Brillouin zone of the elongated honeycomb lattice if
a four-site unit cell is chosen. All high-symmetry points shown are
quasi-2D.

honeycomb lattice. It is thus possible to construct states (e.g.,
skew-zigzag states) that do not break the translation symmetry
on the hyperhoneycomb lattice, although their 2D projections
break the honeycomb translation symmetry.

Further insight is gained in reciprocal space. All high-
symmetry points displayed in Fig. 1(d) have a vanishing com-
ponent along the direction of the reciprocal lattice vector b⇤
(up to reciprocal-lattice translations). States with ordering
wavevectors at these high-symmetry points thus exhibit no
modulation along the b axis in real space and are quasi-2D:
Their projection onto the ac plane yields states on the hon-
eycomb lattice with the exact same classical energy. This ap-
plies to all ordered phases in the nearest-neighbor Heisenberg-
Kitaev (HK) model in zero field. Upon the inclusion of other
symmetry-allowed interactions, as well as in a magnetic field,
Kitaev systems also stabilize multi-Q and incommensurate
states. We will show that even such more exotic states, in-
cluding the counterrotating spiral states that are realized in
the di↵erent Li2IrO3 polytypes, are quasi-2D. Moreover, the
3D–2D mapping discussed here for the hyperhoneycomb lat-
tice can be extended to the full harmonic honeycomb series,
for details see the supplemental material (SM) [28].

Heisenberg-Kitaev model in a magnetic field. To illustrate
the power of the advertised mapping, we consider the spin-S

HK Hamiltonian [11, 13] in a uniform magnetic field h,

HHK = J

X

hi ji

Si · S j + K

X

hi ji�

S
�
i
S
�
j
� h ·

X

i

Si, (1)

where � 2 {x, y, z} labels the three di↵erent types of bonds on
the lattice. The couplings are conventionally parameterized
as J = A cos' and K = 2A sin', where A > 0 is an overall
energy scale [32]. The 2D model on the honeycomb lattice
has been studied intensely, see Refs. 3, 33–35 for reviews. For
non-zero field, the classical phase diagram (i.e., for S ! 1)
of this and related models has been determined [25, 36–38],
and the S = 1/2 case has also been studied [39–48]. The 3D
model on the hyperhoneycomb lattice has been considered in
Refs. 26 and 49.

Here we have determined the phase diagram of the classical
HK model in a magnetic field using a combination of high-
field spin-wave theory and classical energy minimization. On
the hyperhoneycomb lattice, the number of possible geome-
tries of the magnetic unit cell drastically increases with its
size. For reasons of numerical feasibility and consistency, we
have restricted the numerical energy minimization in both the
2D and 3D cases to states with up to 12 sites in the magnetic
unit cell, but have included all possible unit-cell geometries;
for details see the SM [28]. Our findings on the honeycomb
lattice are consistent with the previous analysis [25, 50].

The result, comparing the hyperhoneycomb and honey-
comb cases for a field along the [111] / (x̂ + ŷ + ẑ)/

p
3

direction, is displayed in Fig. 2. The various phases are char-
acterized in the SM [28]. Remarkably, both phase diagrams
agree quantitatively, with the exception of the 3D spiral phase,
which appears only in the 3D case of panel (a). Inspecting the
individual phases, we see that all phases except the 3D spi-
ral have ordering wavevectors located in the ac plane, such
that 3D–2D mapping applies, whereas the 3D spiral phase has
Q = 2

3 Y, evading the mapping. The latter is hence a gen-
uine 3D phase, with a 12-site magnetic unit cell, and we have
illustrated its spin configuration in Fig. 2(c).

We have also determined the phase diagram of the hyper-
honeycomb model in a field along the [001] / ẑ direction, for
which all in-field ordered states are simply canted versions
of the zero-field orders, without any field-induced intermedi-
ate phases, in complete quantitative equivalence with the 2D
honeycomb-lattice result [25].

We note that early work on the hyperhoneycomb-HK model
in a magnetic field [49] missed the nontrivial field-induced
phases found here. We have explicitly checked that our novel
intermediate phases have lower energies than the canted skew-
zigzag and skew-stripy states suggested in Ref. 49.
� and other interactions. For actual Kitaev materials, it

has been shown that, in addition to nearest-neighbor Kitaev
and Heisenberg interactions, also symmetric o↵-diagonal in-
teractions, commonly dubbed � interactions, are important
[12, 37, 51–55]. To model �-Li2IrO3, we hence consider the
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Figure 1. (a) Hyperhoneycomb lattice with magnetic skew-zigzag
state and (b) honeycomb lattice with zigzag state; both are equiv-
alent as explained in the text. (c) Hyperhoneycomb lattice viewed
from the crystallographic b̂ direction, illustrating its projection onto
an elongated honeycomb lattice. Colored balls indicate spin direc-
tions. (d) Brillouin zones of the hyperhoneycomb lattice (black) and
the elongated honeycomb lattice (red dashed). 3D states with or-
dering wavevectors in the ac plane can be transformed into equiva-
lent 2D states on the honeycomb lattice. The quarters of the front
hexagon (such as the green quadrangle) can be shifted with recipro-
cal lattice vectors to the ac plane and form, together with the ac-plane
cut of the first Brillouin zone, a rectangle (black dashed). The latter
becomes the 2D Brillouin zone of the elongated honeycomb lattice if
a four-site unit cell is chosen. All high-symmetry points shown are
quasi-2D.

honeycomb lattice. It is thus possible to construct states (e.g.,
skew-zigzag states) that do not break the translation symmetry
on the hyperhoneycomb lattice, although their 2D projections
break the honeycomb translation symmetry.

Further insight is gained in reciprocal space. All high-
symmetry points displayed in Fig. 1(d) have a vanishing com-
ponent along the direction of the reciprocal lattice vector b⇤
(up to reciprocal-lattice translations). States with ordering
wavevectors at these high-symmetry points thus exhibit no
modulation along the b axis in real space and are quasi-2D:
Their projection onto the ac plane yields states on the hon-
eycomb lattice with the exact same classical energy. This ap-
plies to all ordered phases in the nearest-neighbor Heisenberg-
Kitaev (HK) model in zero field. Upon the inclusion of other
symmetry-allowed interactions, as well as in a magnetic field,
Kitaev systems also stabilize multi-Q and incommensurate
states. We will show that even such more exotic states, in-
cluding the counterrotating spiral states that are realized in
the di↵erent Li2IrO3 polytypes, are quasi-2D. Moreover, the
3D–2D mapping discussed here for the hyperhoneycomb lat-
tice can be extended to the full harmonic honeycomb series,
for details see the supplemental material (SM) [28].

Heisenberg-Kitaev model in a magnetic field. To illustrate
the power of the advertised mapping, we consider the spin-S

HK Hamiltonian [11, 13] in a uniform magnetic field h,

HHK = J

X

hi ji

Si · S j + K

X

hi ji�

S
�
i
S
�
j
� h ·

X

i

Si, (1)

where � 2 {x, y, z} labels the three di↵erent types of bonds on
the lattice. The couplings are conventionally parameterized
as J = A cos' and K = 2A sin', where A > 0 is an overall
energy scale [32]. The 2D model on the honeycomb lattice
has been studied intensely, see Refs. 3, 33–35 for reviews. For
non-zero field, the classical phase diagram (i.e., for S ! 1)
of this and related models has been determined [25, 36–38],
and the S = 1/2 case has also been studied [39–48]. The 3D
model on the hyperhoneycomb lattice has been considered in
Refs. 26 and 49.

Here we have determined the phase diagram of the classical
HK model in a magnetic field using a combination of high-
field spin-wave theory and classical energy minimization. On
the hyperhoneycomb lattice, the number of possible geome-
tries of the magnetic unit cell drastically increases with its
size. For reasons of numerical feasibility and consistency, we
have restricted the numerical energy minimization in both the
2D and 3D cases to states with up to 12 sites in the magnetic
unit cell, but have included all possible unit-cell geometries;
for details see the SM [28]. Our findings on the honeycomb
lattice are consistent with the previous analysis [25, 50].

The result, comparing the hyperhoneycomb and honey-
comb cases for a field along the [111] / (x̂ + ŷ + ẑ)/

p
3

direction, is displayed in Fig. 2. The various phases are char-
acterized in the SM [28]. Remarkably, both phase diagrams
agree quantitatively, with the exception of the 3D spiral phase,
which appears only in the 3D case of panel (a). Inspecting the
individual phases, we see that all phases except the 3D spi-
ral have ordering wavevectors located in the ac plane, such
that 3D–2D mapping applies, whereas the 3D spiral phase has
Q = 2

3 Y, evading the mapping. The latter is hence a gen-
uine 3D phase, with a 12-site magnetic unit cell, and we have
illustrated its spin configuration in Fig. 2(c).

We have also determined the phase diagram of the hyper-
honeycomb model in a field along the [001] / ẑ direction, for
which all in-field ordered states are simply canted versions
of the zero-field orders, without any field-induced intermedi-
ate phases, in complete quantitative equivalence with the 2D
honeycomb-lattice result [25].

We note that early work on the hyperhoneycomb-HK model
in a magnetic field [49] missed the nontrivial field-induced
phases found here. We have explicitly checked that our novel
intermediate phases have lower energies than the canted skew-
zigzag and skew-stripy states suggested in Ref. 49.
� and other interactions. For actual Kitaev materials, it

has been shown that, in addition to nearest-neighbor Kitaev
and Heisenberg interactions, also symmetric o↵-diagonal in-
teractions, commonly dubbed � interactions, are important
[12, 37, 51–55]. To model �-Li2IrO3, we hence consider the
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â
b̂ ĉ
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Figure 1. (a) Hyperhoneycomb lattice with magnetic skew-zigzag
state and (b) honeycomb lattice with zigzag state; both are equiv-
alent as explained in the text. (c) Hyperhoneycomb lattice viewed
from the crystallographic b̂ direction, illustrating its projection onto
an elongated honeycomb lattice. Colored balls indicate spin direc-
tions. (d) Brillouin zones of the hyperhoneycomb lattice (black) and
the elongated honeycomb lattice (red dashed). 3D states with or-
dering wavevectors in the ac plane can be transformed into equiva-
lent 2D states on the honeycomb lattice. The quarters of the front
hexagon (such as the green quadrangle) can be shifted with recipro-
cal lattice vectors to the ac plane and form, together with the ac-plane
cut of the first Brillouin zone, a rectangle (black dashed). The latter
becomes the 2D Brillouin zone of the elongated honeycomb lattice if
a four-site unit cell is chosen. All high-symmetry points shown are
quasi-2D.

honeycomb lattice. It is thus possible to construct states (e.g.,
skew-zigzag states) that do not break the translation symmetry
on the hyperhoneycomb lattice, although their 2D projections
break the honeycomb translation symmetry.

Further insight is gained in reciprocal space. All high-
symmetry points displayed in Fig. 1(d) have a vanishing com-
ponent along the direction of the reciprocal lattice vector b⇤
(up to reciprocal-lattice translations). States with ordering
wavevectors at these high-symmetry points thus exhibit no
modulation along the b axis in real space and are quasi-2D:
Their projection onto the ac plane yields states on the hon-
eycomb lattice with the exact same classical energy. This ap-
plies to all ordered phases in the nearest-neighbor Heisenberg-
Kitaev (HK) model in zero field. Upon the inclusion of other
symmetry-allowed interactions, as well as in a magnetic field,
Kitaev systems also stabilize multi-Q and incommensurate
states. We will show that even such more exotic states, in-
cluding the counterrotating spiral states that are realized in
the di↵erent Li2IrO3 polytypes, are quasi-2D. Moreover, the
3D–2D mapping discussed here for the hyperhoneycomb lat-
tice can be extended to the full harmonic honeycomb series,
for details see the supplemental material (SM) [28].

Heisenberg-Kitaev model in a magnetic field. To illustrate
the power of the advertised mapping, we consider the spin-S

HK Hamiltonian [11, 13] in a uniform magnetic field h,

HHK = J

X

hi ji

Si · S j + K

X

hi ji�

S
�
i
S
�
j
� h ·

X

i

Si, (1)

where � 2 {x, y, z} labels the three di↵erent types of bonds on
the lattice. The couplings are conventionally parameterized
as J = A cos' and K = 2A sin', where A > 0 is an overall
energy scale [32]. The 2D model on the honeycomb lattice
has been studied intensely, see Refs. 3, 33–35 for reviews. For
non-zero field, the classical phase diagram (i.e., for S ! 1)
of this and related models has been determined [25, 36–38],
and the S = 1/2 case has also been studied [39–48]. The 3D
model on the hyperhoneycomb lattice has been considered in
Refs. 26 and 49.

Here we have determined the phase diagram of the classical
HK model in a magnetic field using a combination of high-
field spin-wave theory and classical energy minimization. On
the hyperhoneycomb lattice, the number of possible geome-
tries of the magnetic unit cell drastically increases with its
size. For reasons of numerical feasibility and consistency, we
have restricted the numerical energy minimization in both the
2D and 3D cases to states with up to 12 sites in the magnetic
unit cell, but have included all possible unit-cell geometries;
for details see the SM [28]. Our findings on the honeycomb
lattice are consistent with the previous analysis [25, 50].

The result, comparing the hyperhoneycomb and honey-
comb cases for a field along the [111] / (x̂ + ŷ + ẑ)/

p
3

direction, is displayed in Fig. 2. The various phases are char-
acterized in the SM [28]. Remarkably, both phase diagrams
agree quantitatively, with the exception of the 3D spiral phase,
which appears only in the 3D case of panel (a). Inspecting the
individual phases, we see that all phases except the 3D spi-
ral have ordering wavevectors located in the ac plane, such
that 3D–2D mapping applies, whereas the 3D spiral phase has
Q = 2

3 Y, evading the mapping. The latter is hence a gen-
uine 3D phase, with a 12-site magnetic unit cell, and we have
illustrated its spin configuration in Fig. 2(c).

We have also determined the phase diagram of the hyper-
honeycomb model in a field along the [001] / ẑ direction, for
which all in-field ordered states are simply canted versions
of the zero-field orders, without any field-induced intermedi-
ate phases, in complete quantitative equivalence with the 2D
honeycomb-lattice result [25].

We note that early work on the hyperhoneycomb-HK model
in a magnetic field [49] missed the nontrivial field-induced
phases found here. We have explicitly checked that our novel
intermediate phases have lower energies than the canted skew-
zigzag and skew-stripy states suggested in Ref. 49.
� and other interactions. For actual Kitaev materials, it

has been shown that, in addition to nearest-neighbor Kitaev
and Heisenberg interactions, also symmetric o↵-diagonal in-
teractions, commonly dubbed � interactions, are important
[12, 37, 51–55]. To model �-Li2IrO3, we hence consider the
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Figure 3. Phase diagram of the classical HK±� model for T ! 0, with J = A sin ✓ cos', K = A sin ✓ sin', and � = A cos ✓  0 [32] on the (a)
hyperhoneycomb lattice [52] and (b) honeycomb lattice. Hatched regions in (a) denote genuine 3D phases with ordering wavevectors outside
the ac plane. The white dashed line indicates the regions in which the Luttinger-Tisza approach fails to satisfy the local length constraint and
a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).

ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.
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ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.
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Example #1: Heisenberg-Kitaev model in a magnetic field
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Figure 1. (a) Hyperhoneycomb lattice with magnetic skew-zigzag
state and (b) honeycomb lattice with zigzag state; both are equiv-
alent as explained in the text. (c) Hyperhoneycomb lattice viewed
from the crystallographic b̂ direction, illustrating its projection onto
an elongated honeycomb lattice. Colored balls indicate spin direc-
tions. (d) Brillouin zones of the hyperhoneycomb lattice (black) and
the elongated honeycomb lattice (red dashed). 3D states with or-
dering wavevectors in the ac plane can be transformed into equiva-
lent 2D states on the honeycomb lattice. The quarters of the front
hexagon (such as the green quadrangle) can be shifted with recipro-
cal lattice vectors to the ac plane and form, together with the ac-plane
cut of the first Brillouin zone, a rectangle (black dashed). The latter
becomes the 2D Brillouin zone of the elongated honeycomb lattice if
a four-site unit cell is chosen. All high-symmetry points shown are
quasi-2D.

honeycomb lattice. It is thus possible to construct states (e.g.,
skew-zigzag states) that do not break the translation symmetry
on the hyperhoneycomb lattice, although their 2D projections
break the honeycomb translation symmetry.

Further insight is gained in reciprocal space. All high-
symmetry points displayed in Fig. 1(d) have a vanishing com-
ponent along the direction of the reciprocal lattice vector b⇤
(up to reciprocal-lattice translations). States with ordering
wavevectors at these high-symmetry points thus exhibit no
modulation along the b axis in real space and are quasi-2D:
Their projection onto the ac plane yields states on the hon-
eycomb lattice with the exact same classical energy. This ap-
plies to all ordered phases in the nearest-neighbor Heisenberg-
Kitaev (HK) model in zero field. Upon the inclusion of other
symmetry-allowed interactions, as well as in a magnetic field,
Kitaev systems also stabilize multi-Q and incommensurate
states. We will show that even such more exotic states, in-
cluding the counterrotating spiral states that are realized in
the di↵erent Li2IrO3 polytypes, are quasi-2D. Moreover, the
3D–2D mapping discussed here for the hyperhoneycomb lat-
tice can be extended to the full harmonic honeycomb series,
for details see the supplemental material (SM) [28].

Heisenberg-Kitaev model in a magnetic field. To illustrate
the power of the advertised mapping, we consider the spin-S

HK Hamiltonian [11, 13] in a uniform magnetic field h,

HHK = J

X

hi ji

Si · S j + K

X

hi ji�

S
�
i
S
�
j
� h ·

X

i

Si, (1)

where � 2 {x, y, z} labels the three di↵erent types of bonds on
the lattice. The couplings are conventionally parameterized
as J = A cos' and K = 2A sin', where A > 0 is an overall
energy scale [32]. The 2D model on the honeycomb lattice
has been studied intensely, see Refs. 3, 33–35 for reviews. For
non-zero field, the classical phase diagram (i.e., for S ! 1)
of this and related models has been determined [25, 36–38],
and the S = 1/2 case has also been studied [39–48]. The 3D
model on the hyperhoneycomb lattice has been considered in
Refs. 26 and 49.

Here we have determined the phase diagram of the classical
HK model in a magnetic field using a combination of high-
field spin-wave theory and classical energy minimization. On
the hyperhoneycomb lattice, the number of possible geome-
tries of the magnetic unit cell drastically increases with its
size. For reasons of numerical feasibility and consistency, we
have restricted the numerical energy minimization in both the
2D and 3D cases to states with up to 12 sites in the magnetic
unit cell, but have included all possible unit-cell geometries;
for details see the SM [28]. Our findings on the honeycomb
lattice are consistent with the previous analysis [25, 50].

The result, comparing the hyperhoneycomb and honey-
comb cases for a field along the [111] / (x̂ + ŷ + ẑ)/

p
3

direction, is displayed in Fig. 2. The various phases are char-
acterized in the SM [28]. Remarkably, both phase diagrams
agree quantitatively, with the exception of the 3D spiral phase,
which appears only in the 3D case of panel (a). Inspecting the
individual phases, we see that all phases except the 3D spi-
ral have ordering wavevectors located in the ac plane, such
that 3D–2D mapping applies, whereas the 3D spiral phase has
Q = 2

3 Y, evading the mapping. The latter is hence a gen-
uine 3D phase, with a 12-site magnetic unit cell, and we have
illustrated its spin configuration in Fig. 2(c).

We have also determined the phase diagram of the hyper-
honeycomb model in a field along the [001] / ẑ direction, for
which all in-field ordered states are simply canted versions
of the zero-field orders, without any field-induced intermedi-
ate phases, in complete quantitative equivalence with the 2D
honeycomb-lattice result [25].

We note that early work on the hyperhoneycomb-HK model
in a magnetic field [49] missed the nontrivial field-induced
phases found here. We have explicitly checked that our novel
intermediate phases have lower energies than the canted skew-
zigzag and skew-stripy states suggested in Ref. 49.
� and other interactions. For actual Kitaev materials, it

has been shown that, in addition to nearest-neighbor Kitaev
and Heisenberg interactions, also symmetric o↵-diagonal in-
teractions, commonly dubbed � interactions, are important
[12, 37, 51–55]. To model �-Li2IrO3, we hence consider the
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Néel zigzag0.1

0.2

0.3

K
itaevM

sta
gg

3D
2D

h h

zigzag

Néel
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â

b̂ ĉ
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Figure 2. Phase diagram of the classical HK model in a magnetic field h along the [111] / (x̂+ŷ+ẑ)/
p

3 direction for T ! 0, with J = A cos',
K = 2A sin' [32], and the radial direction representing the field strength h, with h/(AS ) = 1, 2, 3, 4, 5 from outer to inner gray circles, on the
(a) hyperhoneycomb lattice and (b) honeycomb lattice. The latter agrees with the previous analysis [25, 36], with the exception of small regions
for which the true ground state has incommensurate ordering wavevectors. Thick (thin) black lines denote first-order (second-order) phase
transitions. Except for the 3D spiral phase, for which a representative spin configuration is shown in (c), all phases of the hyperhoneycomb
lattice have a 2D analogue with exactly the same ground-state energy. (d) Order parameters in Néel and zigzag phases from linear spin-wave
theory for S = 1/2 and zero field, comparing the hyperhoneycomb (solid) and honeycomb (dashed) lattices.

Hamiltonian

HHK� =
X

hi ji�

h
JSi · S j + KS

�
i
S
�
j
± �
⇣
S
↵
i
S
�
j
+ S

�
i
S
↵
j

⌘i
, (2)

where ↵ and � label the two remaining directions on a � bond.
On the hyperhoneycomb lattice, there are two inequivalent
types of pairwise parallel x (y) bonds, denoted as x and x

0

(y and y
0), respectively, while all z bonds are equivalent; see

Fig. 1(a). We take the upper (lower) sign in front of the �
interaction on x, y, and z (x

0 and y
0) bonds; this choice can

be justified microscopically [52]. Applying the 3D–2D map-
ping to this model, which we dub HK±� model, we see that
it corresponds to an unusual 2D model. Compared to the
Heisenberg-Kitaev-� (HK�) model typically considered for
2D Kitaev materials, this has a supermodulation in the � inter-
action. Importantly, in the presence of sizable � interactions,
incommensurate states appear [12, 52].

Despite these complications, the concept of the 3D–2D
mapping continues to apply. We illustrate this in Fig. 3, where
we show the classical phase diagrams of the HK±� model at
zero field for the hyperhoneycomb and honeycomb lattices.
These have been obtained via a combination of a Luttinger-
Tisza analysis and a single-Q ansatz (as the finite-cluster min-
imization does not capture incommensurate states); see the
SM for details [28]. Our result on the hyperhoneycomb lat-
tice agrees with the previous work [52], except for a small re-
gion around the AFabc phase, for which the true ground state
may be a multi-Q state that is beyond our ansatz. Again, the
3D and 2D phase diagrams agree quantitatively, with the ex-
ception of the SPb± and AFabc phases, which appear only in
panel (a) and are thus genuinely 3D. This result is particu-

larly striking for the counterrotating spiral SPa± phases, for
which the ground state is incommensurate, but with an order-
ing wavevector Q k a⇤, i.e., within the ac plane; cf. Fig. 3(c,d).
This phase includes the ground state realized in �-Li2IrO3
[17, 52–55], such that 3D–2D mapping directly applies to this
material.

For completeness, we note that the 3D–2D mapping can
be extended to interactions beyond nearest neighbors. For
instance, second-neighbor interactions on the hyperhoney-
comb lattice are mapped to a combination of second- and
fourth-neighbor interactions on the honeycomb lattice, third-
neighbor interactions map to third- and sixth-neighbor inter-
actions; for details see the SM [28].

Beyond the classical limit. While the advertised qualita-

tive 3D–2D mapping of ordered states is very general, their
quantitative energetic equivalence only applies to the classi-
cal limit, S ! 1. We have therefore studied quantum e↵ects
in a systematic 1/S expansion using spin-wave theory. A first
remarkable insight is that the leading-order magnon spectra
also follow the 3D–2D mapping, i.e., the magnon energies in
both cases are identical for 3D wavevectors belonging to the
ac plane; this is demonstrated explicitly in the SM [28].

In Fig. 2(d), we display the order parameters (i.e., stag-
gered magnetizations) evaluated for S = 1/2 in the Néel and
zigzag phases of the HK model at zero field, comparing the
hyperhoneycomb and honeycomb lattices. In the hyperhon-
eycomb case, the quantum corrections to the classical value
Mstagg = 1/2 are smaller, but the overall shape of the order pa-
rameter as function of ' = arg(2J + iK) is similar to those of
the honeycomb lattice. In particular, in linear spin-wave the-
ory, the critical values of ' at which the order parameters van-
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Figure 2. Phase diagram of the classical HK model in a magnetic field h along the [111] / (x̂+ŷ+ẑ)/
p

3 direction for T ! 0, with J = A cos',
K = 2A sin' [32], and the radial direction representing the field strength h, with h/(AS ) = 1, 2, 3, 4, 5 from outer to inner gray circles, on the
(a) hyperhoneycomb lattice and (b) honeycomb lattice. The latter agrees with the previous analysis [25, 36], with the exception of small regions
for which the true ground state has incommensurate ordering wavevectors. Thick (thin) black lines denote first-order (second-order) phase
transitions. Except for the 3D spiral phase, for which a representative spin configuration is shown in (c), all phases of the hyperhoneycomb
lattice have a 2D analogue with exactly the same ground-state energy. (d) Order parameters in Néel and zigzag phases from linear spin-wave
theory for S = 1/2 and zero field, comparing the hyperhoneycomb (solid) and honeycomb (dashed) lattices.

Hamiltonian

HHK� =
X

hi ji�

h
JSi · S j + KS

�
i
S
�
j
± �
⇣
S
↵
i
S
�
j
+ S

�
i
S
↵
j

⌘i
, (2)

where ↵ and � label the two remaining directions on a � bond.
On the hyperhoneycomb lattice, there are two inequivalent
types of pairwise parallel x (y) bonds, denoted as x and x

0

(y and y
0), respectively, while all z bonds are equivalent; see

Fig. 1(a). We take the upper (lower) sign in front of the �
interaction on x, y, and z (x

0 and y
0) bonds; this choice can

be justified microscopically [52]. Applying the 3D–2D map-
ping to this model, which we dub HK±� model, we see that
it corresponds to an unusual 2D model. Compared to the
Heisenberg-Kitaev-� (HK�) model typically considered for
2D Kitaev materials, this has a supermodulation in the � inter-
action. Importantly, in the presence of sizable � interactions,
incommensurate states appear [12, 52].

Despite these complications, the concept of the 3D–2D
mapping continues to apply. We illustrate this in Fig. 3, where
we show the classical phase diagrams of the HK±� model at
zero field for the hyperhoneycomb and honeycomb lattices.
These have been obtained via a combination of a Luttinger-
Tisza analysis and a single-Q ansatz (as the finite-cluster min-
imization does not capture incommensurate states); see the
SM for details [28]. Our result on the hyperhoneycomb lat-
tice agrees with the previous work [52], except for a small re-
gion around the AFabc phase, for which the true ground state
may be a multi-Q state that is beyond our ansatz. Again, the
3D and 2D phase diagrams agree quantitatively, with the ex-
ception of the SPb± and AFabc phases, which appear only in
panel (a) and are thus genuinely 3D. This result is particu-

larly striking for the counterrotating spiral SPa± phases, for
which the ground state is incommensurate, but with an order-
ing wavevector Q k a⇤, i.e., within the ac plane; cf. Fig. 3(c,d).
This phase includes the ground state realized in �-Li2IrO3
[17, 52–55], such that 3D–2D mapping directly applies to this
material.

For completeness, we note that the 3D–2D mapping can
be extended to interactions beyond nearest neighbors. For
instance, second-neighbor interactions on the hyperhoney-
comb lattice are mapped to a combination of second- and
fourth-neighbor interactions on the honeycomb lattice, third-
neighbor interactions map to third- and sixth-neighbor inter-
actions; for details see the SM [28].

Beyond the classical limit. While the advertised qualita-

tive 3D–2D mapping of ordered states is very general, their
quantitative energetic equivalence only applies to the classi-
cal limit, S ! 1. We have therefore studied quantum e↵ects
in a systematic 1/S expansion using spin-wave theory. A first
remarkable insight is that the leading-order magnon spectra
also follow the 3D–2D mapping, i.e., the magnon energies in
both cases are identical for 3D wavevectors belonging to the
ac plane; this is demonstrated explicitly in the SM [28].

In Fig. 2(d), we display the order parameters (i.e., stag-
gered magnetizations) evaluated for S = 1/2 in the Néel and
zigzag phases of the HK model at zero field, comparing the
hyperhoneycomb and honeycomb lattices. In the hyperhon-
eycomb case, the quantum corrections to the classical value
Mstagg = 1/2 are smaller, but the overall shape of the order pa-
rameter as function of ' = arg(2J + iK) is similar to those of
the honeycomb lattice. In particular, in linear spin-wave the-
ory, the critical values of ' at which the order parameters van-
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Figure 2. Phase diagram of the classical HK model in a magnetic field h along the [111] / (x̂+ŷ+ẑ)/
p

3 direction for T ! 0, with J = A cos',
K = 2A sin' [32], and the radial direction representing the field strength h, with h/(AS ) = 1, 2, 3, 4, 5 from outer to inner gray circles, on the
(a) hyperhoneycomb lattice and (b) honeycomb lattice. The latter agrees with the previous analysis [25, 36], with the exception of small regions
for which the true ground state has incommensurate ordering wavevectors. Thick (thin) black lines denote first-order (second-order) phase
transitions. Except for the 3D spiral phase, for which a representative spin configuration is shown in (c), all phases of the hyperhoneycomb
lattice have a 2D analogue with exactly the same ground-state energy. (d) Order parameters in Néel and zigzag phases from linear spin-wave
theory for S = 1/2 and zero field, comparing the hyperhoneycomb (solid) and honeycomb (dashed) lattices.

Hamiltonian

HHK� =
X

hi ji�

h
JSi · S j + KS

�
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S
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j
± �
⇣
S
↵
i
S
�
j
+ S
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i
S
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where ↵ and � label the two remaining directions on a � bond.
On the hyperhoneycomb lattice, there are two inequivalent
types of pairwise parallel x (y) bonds, denoted as x and x

0

(y and y
0), respectively, while all z bonds are equivalent; see

Fig. 1(a). We take the upper (lower) sign in front of the �
interaction on x, y, and z (x

0 and y
0) bonds; this choice can

be justified microscopically [52]. Applying the 3D–2D map-
ping to this model, which we dub HK±� model, we see that
it corresponds to an unusual 2D model. Compared to the
Heisenberg-Kitaev-� (HK�) model typically considered for
2D Kitaev materials, this has a supermodulation in the � inter-
action. Importantly, in the presence of sizable � interactions,
incommensurate states appear [12, 52].

Despite these complications, the concept of the 3D–2D
mapping continues to apply. We illustrate this in Fig. 3, where
we show the classical phase diagrams of the HK±� model at
zero field for the hyperhoneycomb and honeycomb lattices.
These have been obtained via a combination of a Luttinger-
Tisza analysis and a single-Q ansatz (as the finite-cluster min-
imization does not capture incommensurate states); see the
SM for details [28]. Our result on the hyperhoneycomb lat-
tice agrees with the previous work [52], except for a small re-
gion around the AFabc phase, for which the true ground state
may be a multi-Q state that is beyond our ansatz. Again, the
3D and 2D phase diagrams agree quantitatively, with the ex-
ception of the SPb± and AFabc phases, which appear only in
panel (a) and are thus genuinely 3D. This result is particu-

larly striking for the counterrotating spiral SPa± phases, for
which the ground state is incommensurate, but with an order-
ing wavevector Q k a⇤, i.e., within the ac plane; cf. Fig. 3(c,d).
This phase includes the ground state realized in �-Li2IrO3
[17, 52–55], such that 3D–2D mapping directly applies to this
material.

For completeness, we note that the 3D–2D mapping can
be extended to interactions beyond nearest neighbors. For
instance, second-neighbor interactions on the hyperhoney-
comb lattice are mapped to a combination of second- and
fourth-neighbor interactions on the honeycomb lattice, third-
neighbor interactions map to third- and sixth-neighbor inter-
actions; for details see the SM [28].

Beyond the classical limit. While the advertised qualita-

tive 3D–2D mapping of ordered states is very general, their
quantitative energetic equivalence only applies to the classi-
cal limit, S ! 1. We have therefore studied quantum e↵ects
in a systematic 1/S expansion using spin-wave theory. A first
remarkable insight is that the leading-order magnon spectra
also follow the 3D–2D mapping, i.e., the magnon energies in
both cases are identical for 3D wavevectors belonging to the
ac plane; this is demonstrated explicitly in the SM [28].

In Fig. 2(d), we display the order parameters (i.e., stag-
gered magnetizations) evaluated for S = 1/2 in the Néel and
zigzag phases of the HK model at zero field, comparing the
hyperhoneycomb and honeycomb lattices. In the hyperhon-
eycomb case, the quantum corrections to the classical value
Mstagg = 1/2 are smaller, but the overall shape of the order pa-
rameter as function of ' = arg(2J + iK) is similar to those of
the honeycomb lattice. In particular, in linear spin-wave the-
ory, the critical values of ' at which the order parameters van-
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ĉ⇤

Y0

(a)

z
y0 x0

ẑ
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Figure 1. (a) Hyperhoneycomb lattice with magnetic skew-zigzag
state and (b) honeycomb lattice with zigzag state; both are equiv-
alent as explained in the text. (c) Hyperhoneycomb lattice viewed
from the crystallographic b̂ direction, illustrating its projection onto
an elongated honeycomb lattice. Colored balls indicate spin direc-
tions. (d) Brillouin zones of the hyperhoneycomb lattice (black) and
the elongated honeycomb lattice (red dashed). 3D states with or-
dering wavevectors in the ac plane can be transformed into equiva-
lent 2D states on the honeycomb lattice. The quarters of the front
hexagon (such as the green quadrangle) can be shifted with recipro-
cal lattice vectors to the ac plane and form, together with the ac-plane
cut of the first Brillouin zone, a rectangle (black dashed). The latter
becomes the 2D Brillouin zone of the elongated honeycomb lattice if
a four-site unit cell is chosen. All high-symmetry points shown are
quasi-2D.

honeycomb lattice. It is thus possible to construct states (e.g.,
skew-zigzag states) that do not break the translation symmetry
on the hyperhoneycomb lattice, although their 2D projections
break the honeycomb translation symmetry.

Further insight is gained in reciprocal space. All high-
symmetry points displayed in Fig. 1(d) have a vanishing com-
ponent along the direction of the reciprocal lattice vector b⇤
(up to reciprocal-lattice translations). States with ordering
wavevectors at these high-symmetry points thus exhibit no
modulation along the b axis in real space and are quasi-2D:
Their projection onto the ac plane yields states on the hon-
eycomb lattice with the exact same classical energy. This ap-
plies to all ordered phases in the nearest-neighbor Heisenberg-
Kitaev (HK) model in zero field. Upon the inclusion of other
symmetry-allowed interactions, as well as in a magnetic field,
Kitaev systems also stabilize multi-Q and incommensurate
states. We will show that even such more exotic states, in-
cluding the counterrotating spiral states that are realized in
the di↵erent Li2IrO3 polytypes, are quasi-2D. Moreover, the
3D–2D mapping discussed here for the hyperhoneycomb lat-
tice can be extended to the full harmonic honeycomb series,
for details see the supplemental material (SM) [28].

Heisenberg-Kitaev model in a magnetic field. To illustrate
the power of the advertised mapping, we consider the spin-S

HK Hamiltonian [11, 13] in a uniform magnetic field h,

HHK = J

X

hi ji

Si · S j + K

X

hi ji�

S
�
i
S
�
j
� h ·

X

i

Si, (1)

where � 2 {x, y, z} labels the three di↵erent types of bonds on
the lattice. The couplings are conventionally parameterized
as J = A cos' and K = 2A sin', where A > 0 is an overall
energy scale [32]. The 2D model on the honeycomb lattice
has been studied intensely, see Refs. 3, 33–35 for reviews. For
non-zero field, the classical phase diagram (i.e., for S ! 1)
of this and related models has been determined [25, 36–38],
and the S = 1/2 case has also been studied [39–48]. The 3D
model on the hyperhoneycomb lattice has been considered in
Refs. 26 and 49.

Here we have determined the phase diagram of the classical
HK model in a magnetic field using a combination of high-
field spin-wave theory and classical energy minimization. On
the hyperhoneycomb lattice, the number of possible geome-
tries of the magnetic unit cell drastically increases with its
size. For reasons of numerical feasibility and consistency, we
have restricted the numerical energy minimization in both the
2D and 3D cases to states with up to 12 sites in the magnetic
unit cell, but have included all possible unit-cell geometries;
for details see the SM [28]. Our findings on the honeycomb
lattice are consistent with the previous analysis [25, 50].

The result, comparing the hyperhoneycomb and honey-
comb cases for a field along the [111] / (x̂ + ŷ + ẑ)/

p
3

direction, is displayed in Fig. 2. The various phases are char-
acterized in the SM [28]. Remarkably, both phase diagrams
agree quantitatively, with the exception of the 3D spiral phase,
which appears only in the 3D case of panel (a). Inspecting the
individual phases, we see that all phases except the 3D spi-
ral have ordering wavevectors located in the ac plane, such
that 3D–2D mapping applies, whereas the 3D spiral phase has
Q = 2

3 Y, evading the mapping. The latter is hence a gen-
uine 3D phase, with a 12-site magnetic unit cell, and we have
illustrated its spin configuration in Fig. 2(c).

We have also determined the phase diagram of the hyper-
honeycomb model in a field along the [001] / ẑ direction, for
which all in-field ordered states are simply canted versions
of the zero-field orders, without any field-induced intermedi-
ate phases, in complete quantitative equivalence with the 2D
honeycomb-lattice result [25].

We note that early work on the hyperhoneycomb-HK model
in a magnetic field [49] missed the nontrivial field-induced
phases found here. We have explicitly checked that our novel
intermediate phases have lower energies than the canted skew-
zigzag and skew-stripy states suggested in Ref. 49.
� and other interactions. For actual Kitaev materials, it

has been shown that, in addition to nearest-neighbor Kitaev
and Heisenberg interactions, also symmetric o↵-diagonal in-
teractions, commonly dubbed � interactions, are important
[12, 37, 51–55]. To model �-Li2IrO3, we hence consider the
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Figure 2. Phase diagram of the classical HK model in a magnetic field h along the [111] / (x̂+ŷ+ẑ)/
p

3 direction for T ! 0, with J = A cos',
K = 2A sin' [32], and the radial direction representing the field strength h, with h/(AS ) = 1, 2, 3, 4, 5 from outer to inner gray circles, on the
(a) hyperhoneycomb lattice and (b) honeycomb lattice. The latter agrees with the previous analysis [25, 36], with the exception of small regions
for which the true ground state has incommensurate ordering wavevectors. Thick (thin) black lines denote first-order (second-order) phase
transitions. Except for the 3D spiral phase, for which a representative spin configuration is shown in (c), all phases of the hyperhoneycomb
lattice have a 2D analogue with exactly the same ground-state energy. (d) Order parameters in Néel and zigzag phases from linear spin-wave
theory for S = 1/2 and zero field, comparing the hyperhoneycomb (solid) and honeycomb (dashed) lattices.

Hamiltonian

HHK� =
X

hi ji�

h
JSi · S j + KS

�
i
S
�
j
± �
⇣
S
↵
i
S
�
j
+ S

�
i
S
↵
j

⌘i
, (2)

where ↵ and � label the two remaining directions on a � bond.
On the hyperhoneycomb lattice, there are two inequivalent
types of pairwise parallel x (y) bonds, denoted as x and x

0

(y and y
0), respectively, while all z bonds are equivalent; see

Fig. 1(a). We take the upper (lower) sign in front of the �
interaction on x, y, and z (x

0 and y
0) bonds; this choice can

be justified microscopically [52]. Applying the 3D–2D map-
ping to this model, which we dub HK±� model, we see that
it corresponds to an unusual 2D model. Compared to the
Heisenberg-Kitaev-� (HK�) model typically considered for
2D Kitaev materials, this has a supermodulation in the � inter-
action. Importantly, in the presence of sizable � interactions,
incommensurate states appear [12, 52].

Despite these complications, the concept of the 3D–2D
mapping continues to apply. We illustrate this in Fig. 3, where
we show the classical phase diagrams of the HK±� model at
zero field for the hyperhoneycomb and honeycomb lattices.
These have been obtained via a combination of a Luttinger-
Tisza analysis and a single-Q ansatz (as the finite-cluster min-
imization does not capture incommensurate states); see the
SM for details [28]. Our result on the hyperhoneycomb lat-
tice agrees with the previous work [52], except for a small re-
gion around the AFabc phase, for which the true ground state
may be a multi-Q state that is beyond our ansatz. Again, the
3D and 2D phase diagrams agree quantitatively, with the ex-
ception of the SPb± and AFabc phases, which appear only in
panel (a) and are thus genuinely 3D. This result is particu-

larly striking for the counterrotating spiral SPa± phases, for
which the ground state is incommensurate, but with an order-
ing wavevector Q k a⇤, i.e., within the ac plane; cf. Fig. 3(c,d).
This phase includes the ground state realized in �-Li2IrO3
[17, 52–55], such that 3D–2D mapping directly applies to this
material.

For completeness, we note that the 3D–2D mapping can
be extended to interactions beyond nearest neighbors. For
instance, second-neighbor interactions on the hyperhoney-
comb lattice are mapped to a combination of second- and
fourth-neighbor interactions on the honeycomb lattice, third-
neighbor interactions map to third- and sixth-neighbor inter-
actions; for details see the SM [28].

Beyond the classical limit. While the advertised qualita-

tive 3D–2D mapping of ordered states is very general, their
quantitative energetic equivalence only applies to the classi-
cal limit, S ! 1. We have therefore studied quantum e↵ects
in a systematic 1/S expansion using spin-wave theory. A first
remarkable insight is that the leading-order magnon spectra
also follow the 3D–2D mapping, i.e., the magnon energies in
both cases are identical for 3D wavevectors belonging to the
ac plane; this is demonstrated explicitly in the SM [28].

In Fig. 2(d), we display the order parameters (i.e., stag-
gered magnetizations) evaluated for S = 1/2 in the Néel and
zigzag phases of the HK model at zero field, comparing the
hyperhoneycomb and honeycomb lattices. In the hyperhon-
eycomb case, the quantum corrections to the classical value
Mstagg = 1/2 are smaller, but the overall shape of the order pa-
rameter as function of ' = arg(2J + iK) is similar to those of
the honeycomb lattice. In particular, in linear spin-wave the-
ory, the critical values of ' at which the order parameters van-
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Figure 1. (a) Hyperhoneycomb lattice with magnetic skew-zigzag
state and (b) honeycomb lattice with zigzag state; both are equiv-
alent as explained in the text. (c) Hyperhoneycomb lattice viewed
from the crystallographic b̂ direction, illustrating its projection onto
an elongated honeycomb lattice. Colored balls indicate spin direc-
tions. (d) Brillouin zones of the hyperhoneycomb lattice (black) and
the elongated honeycomb lattice (red dashed). 3D states with or-
dering wavevectors in the ac plane can be transformed into equiva-
lent 2D states on the honeycomb lattice. The quarters of the front
hexagon (such as the green quadrangle) can be shifted with recipro-
cal lattice vectors to the ac plane and form, together with the ac-plane
cut of the first Brillouin zone, a rectangle (black dashed). The latter
becomes the 2D Brillouin zone of the elongated honeycomb lattice if
a four-site unit cell is chosen. All high-symmetry points shown are
quasi-2D.

honeycomb lattice. It is thus possible to construct states (e.g.,
skew-zigzag states) that do not break the translation symmetry
on the hyperhoneycomb lattice, although their 2D projections
break the honeycomb translation symmetry.

Further insight is gained in reciprocal space. All high-
symmetry points displayed in Fig. 1(d) have a vanishing com-
ponent along the direction of the reciprocal lattice vector b⇤
(up to reciprocal-lattice translations). States with ordering
wavevectors at these high-symmetry points thus exhibit no
modulation along the b axis in real space and are quasi-2D:
Their projection onto the ac plane yields states on the hon-
eycomb lattice with the exact same classical energy. This ap-
plies to all ordered phases in the nearest-neighbor Heisenberg-
Kitaev (HK) model in zero field. Upon the inclusion of other
symmetry-allowed interactions, as well as in a magnetic field,
Kitaev systems also stabilize multi-Q and incommensurate
states. We will show that even such more exotic states, in-
cluding the counterrotating spiral states that are realized in
the di↵erent Li2IrO3 polytypes, are quasi-2D. Moreover, the
3D–2D mapping discussed here for the hyperhoneycomb lat-
tice can be extended to the full harmonic honeycomb series,
for details see the supplemental material (SM) [28].

Heisenberg-Kitaev model in a magnetic field. To illustrate
the power of the advertised mapping, we consider the spin-S

HK Hamiltonian [11, 13] in a uniform magnetic field h,

HHK = J

X

hi ji

Si · S j + K

X

hi ji�

S
�
i
S
�
j
� h ·

X

i

Si, (1)

where � 2 {x, y, z} labels the three di↵erent types of bonds on
the lattice. The couplings are conventionally parameterized
as J = A cos' and K = 2A sin', where A > 0 is an overall
energy scale [32]. The 2D model on the honeycomb lattice
has been studied intensely, see Refs. 3, 33–35 for reviews. For
non-zero field, the classical phase diagram (i.e., for S ! 1)
of this and related models has been determined [25, 36–38],
and the S = 1/2 case has also been studied [39–48]. The 3D
model on the hyperhoneycomb lattice has been considered in
Refs. 26 and 49.

Here we have determined the phase diagram of the classical
HK model in a magnetic field using a combination of high-
field spin-wave theory and classical energy minimization. On
the hyperhoneycomb lattice, the number of possible geome-
tries of the magnetic unit cell drastically increases with its
size. For reasons of numerical feasibility and consistency, we
have restricted the numerical energy minimization in both the
2D and 3D cases to states with up to 12 sites in the magnetic
unit cell, but have included all possible unit-cell geometries;
for details see the SM [28]. Our findings on the honeycomb
lattice are consistent with the previous analysis [25, 50].

The result, comparing the hyperhoneycomb and honey-
comb cases for a field along the [111] / (x̂ + ŷ + ẑ)/

p
3

direction, is displayed in Fig. 2. The various phases are char-
acterized in the SM [28]. Remarkably, both phase diagrams
agree quantitatively, with the exception of the 3D spiral phase,
which appears only in the 3D case of panel (a). Inspecting the
individual phases, we see that all phases except the 3D spi-
ral have ordering wavevectors located in the ac plane, such
that 3D–2D mapping applies, whereas the 3D spiral phase has
Q = 2

3 Y, evading the mapping. The latter is hence a gen-
uine 3D phase, with a 12-site magnetic unit cell, and we have
illustrated its spin configuration in Fig. 2(c).

We have also determined the phase diagram of the hyper-
honeycomb model in a field along the [001] / ẑ direction, for
which all in-field ordered states are simply canted versions
of the zero-field orders, without any field-induced intermedi-
ate phases, in complete quantitative equivalence with the 2D
honeycomb-lattice result [25].

We note that early work on the hyperhoneycomb-HK model
in a magnetic field [49] missed the nontrivial field-induced
phases found here. We have explicitly checked that our novel
intermediate phases have lower energies than the canted skew-
zigzag and skew-stripy states suggested in Ref. 49.
� and other interactions. For actual Kitaev materials, it

has been shown that, in addition to nearest-neighbor Kitaev
and Heisenberg interactions, also symmetric o↵-diagonal in-
teractions, commonly dubbed � interactions, are important
[12, 37, 51–55]. To model �-Li2IrO3, we hence consider the
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Figure 2. Phase diagram of the classical HK model in a magnetic field h along the [111] / (x̂+ŷ+ẑ)/
p

3 direction for T ! 0, with J = A cos',
K = 2A sin' [32], and the radial direction representing the field strength h, with h/(AS ) = 1, 2, 3, 4, 5 from outer to inner gray circles, on the
(a) hyperhoneycomb lattice and (b) honeycomb lattice. The latter agrees with the previous analysis [25, 36], with the exception of small regions
for which the true ground state has incommensurate ordering wavevectors. Thick (thin) black lines denote first-order (second-order) phase
transitions. Except for the 3D spiral phase, for which a representative spin configuration is shown in (c), all phases of the hyperhoneycomb
lattice have a 2D analogue with exactly the same ground-state energy. (d) Order parameters in Néel and zigzag phases from linear spin-wave
theory for S = 1/2 and zero field, comparing the hyperhoneycomb (solid) and honeycomb (dashed) lattices.

Hamiltonian

HHK� =
X

hi ji�

h
JSi · S j + KS

�
i
S
�
j
± �
⇣
S
↵
i
S
�
j
+ S

�
i
S
↵
j

⌘i
, (2)

where ↵ and � label the two remaining directions on a � bond.
On the hyperhoneycomb lattice, there are two inequivalent
types of pairwise parallel x (y) bonds, denoted as x and x

0

(y and y
0), respectively, while all z bonds are equivalent; see

Fig. 1(a). We take the upper (lower) sign in front of the �
interaction on x, y, and z (x

0 and y
0) bonds; this choice can

be justified microscopically [52]. Applying the 3D–2D map-
ping to this model, which we dub HK±� model, we see that
it corresponds to an unusual 2D model. Compared to the
Heisenberg-Kitaev-� (HK�) model typically considered for
2D Kitaev materials, this has a supermodulation in the � inter-
action. Importantly, in the presence of sizable � interactions,
incommensurate states appear [12, 52].

Despite these complications, the concept of the 3D–2D
mapping continues to apply. We illustrate this in Fig. 3, where
we show the classical phase diagrams of the HK±� model at
zero field for the hyperhoneycomb and honeycomb lattices.
These have been obtained via a combination of a Luttinger-
Tisza analysis and a single-Q ansatz (as the finite-cluster min-
imization does not capture incommensurate states); see the
SM for details [28]. Our result on the hyperhoneycomb lat-
tice agrees with the previous work [52], except for a small re-
gion around the AFabc phase, for which the true ground state
may be a multi-Q state that is beyond our ansatz. Again, the
3D and 2D phase diagrams agree quantitatively, with the ex-
ception of the SPb± and AFabc phases, which appear only in
panel (a) and are thus genuinely 3D. This result is particu-

larly striking for the counterrotating spiral SPa± phases, for
which the ground state is incommensurate, but with an order-
ing wavevector Q k a⇤, i.e., within the ac plane; cf. Fig. 3(c,d).
This phase includes the ground state realized in �-Li2IrO3
[17, 52–55], such that 3D–2D mapping directly applies to this
material.

For completeness, we note that the 3D–2D mapping can
be extended to interactions beyond nearest neighbors. For
instance, second-neighbor interactions on the hyperhoney-
comb lattice are mapped to a combination of second- and
fourth-neighbor interactions on the honeycomb lattice, third-
neighbor interactions map to third- and sixth-neighbor inter-
actions; for details see the SM [28].

Beyond the classical limit. While the advertised qualita-

tive 3D–2D mapping of ordered states is very general, their
quantitative energetic equivalence only applies to the classi-
cal limit, S ! 1. We have therefore studied quantum e↵ects
in a systematic 1/S expansion using spin-wave theory. A first
remarkable insight is that the leading-order magnon spectra
also follow the 3D–2D mapping, i.e., the magnon energies in
both cases are identical for 3D wavevectors belonging to the
ac plane; this is demonstrated explicitly in the SM [28].

In Fig. 2(d), we display the order parameters (i.e., stag-
gered magnetizations) evaluated for S = 1/2 in the Néel and
zigzag phases of the HK model at zero field, comparing the
hyperhoneycomb and honeycomb lattices. In the hyperhon-
eycomb case, the quantum corrections to the classical value
Mstagg = 1/2 are smaller, but the overall shape of the order pa-
rameter as function of ' = arg(2J + iK) is similar to those of
the honeycomb lattice. In particular, in linear spin-wave the-
ory, the critical values of ' at which the order parameters van-
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Figure 1. (a) Hyperhoneycomb lattice with magnetic skew-zigzag
state and (b) honeycomb lattice with zigzag state; both are equiv-
alent as explained in the text. (c) Hyperhoneycomb lattice viewed
from the crystallographic b̂ direction, illustrating its projection onto
an elongated honeycomb lattice. Colored balls indicate spin direc-
tions. (d) Brillouin zones of the hyperhoneycomb lattice (black) and
the elongated honeycomb lattice (red dashed). 3D states with or-
dering wavevectors in the ac plane can be transformed into equiva-
lent 2D states on the honeycomb lattice. The quarters of the front
hexagon (such as the green quadrangle) can be shifted with recipro-
cal lattice vectors to the ac plane and form, together with the ac-plane
cut of the first Brillouin zone, a rectangle (black dashed). The latter
becomes the 2D Brillouin zone of the elongated honeycomb lattice if
a four-site unit cell is chosen. All high-symmetry points shown are
quasi-2D.

honeycomb lattice. It is thus possible to construct states (e.g.,
skew-zigzag states) that do not break the translation symmetry
on the hyperhoneycomb lattice, although their 2D projections
break the honeycomb translation symmetry.

Further insight is gained in reciprocal space. All high-
symmetry points displayed in Fig. 1(d) have a vanishing com-
ponent along the direction of the reciprocal lattice vector b⇤
(up to reciprocal-lattice translations). States with ordering
wavevectors at these high-symmetry points thus exhibit no
modulation along the b axis in real space and are quasi-2D:
Their projection onto the ac plane yields states on the hon-
eycomb lattice with the exact same classical energy. This ap-
plies to all ordered phases in the nearest-neighbor Heisenberg-
Kitaev (HK) model in zero field. Upon the inclusion of other
symmetry-allowed interactions, as well as in a magnetic field,
Kitaev systems also stabilize multi-Q and incommensurate
states. We will show that even such more exotic states, in-
cluding the counterrotating spiral states that are realized in
the di↵erent Li2IrO3 polytypes, are quasi-2D. Moreover, the
3D–2D mapping discussed here for the hyperhoneycomb lat-
tice can be extended to the full harmonic honeycomb series,
for details see the supplemental material (SM) [28].

Heisenberg-Kitaev model in a magnetic field. To illustrate
the power of the advertised mapping, we consider the spin-S

HK Hamiltonian [11, 13] in a uniform magnetic field h,

HHK = J

X

hi ji

Si · S j + K

X

hi ji�

S
�
i
S
�
j
� h ·

X

i

Si, (1)

where � 2 {x, y, z} labels the three di↵erent types of bonds on
the lattice. The couplings are conventionally parameterized
as J = A cos' and K = 2A sin', where A > 0 is an overall
energy scale [32]. The 2D model on the honeycomb lattice
has been studied intensely, see Refs. 3, 33–35 for reviews. For
non-zero field, the classical phase diagram (i.e., for S ! 1)
of this and related models has been determined [25, 36–38],
and the S = 1/2 case has also been studied [39–48]. The 3D
model on the hyperhoneycomb lattice has been considered in
Refs. 26 and 49.

Here we have determined the phase diagram of the classical
HK model in a magnetic field using a combination of high-
field spin-wave theory and classical energy minimization. On
the hyperhoneycomb lattice, the number of possible geome-
tries of the magnetic unit cell drastically increases with its
size. For reasons of numerical feasibility and consistency, we
have restricted the numerical energy minimization in both the
2D and 3D cases to states with up to 12 sites in the magnetic
unit cell, but have included all possible unit-cell geometries;
for details see the SM [28]. Our findings on the honeycomb
lattice are consistent with the previous analysis [25, 50].

The result, comparing the hyperhoneycomb and honey-
comb cases for a field along the [111] / (x̂ + ŷ + ẑ)/

p
3

direction, is displayed in Fig. 2. The various phases are char-
acterized in the SM [28]. Remarkably, both phase diagrams
agree quantitatively, with the exception of the 3D spiral phase,
which appears only in the 3D case of panel (a). Inspecting the
individual phases, we see that all phases except the 3D spi-
ral have ordering wavevectors located in the ac plane, such
that 3D–2D mapping applies, whereas the 3D spiral phase has
Q = 2

3 Y, evading the mapping. The latter is hence a gen-
uine 3D phase, with a 12-site magnetic unit cell, and we have
illustrated its spin configuration in Fig. 2(c).

We have also determined the phase diagram of the hyper-
honeycomb model in a field along the [001] / ẑ direction, for
which all in-field ordered states are simply canted versions
of the zero-field orders, without any field-induced intermedi-
ate phases, in complete quantitative equivalence with the 2D
honeycomb-lattice result [25].

We note that early work on the hyperhoneycomb-HK model
in a magnetic field [49] missed the nontrivial field-induced
phases found here. We have explicitly checked that our novel
intermediate phases have lower energies than the canted skew-
zigzag and skew-stripy states suggested in Ref. 49.
� and other interactions. For actual Kitaev materials, it

has been shown that, in addition to nearest-neighbor Kitaev
and Heisenberg interactions, also symmetric o↵-diagonal in-
teractions, commonly dubbed � interactions, are important
[12, 37, 51–55]. To model �-Li2IrO3, we hence consider the

Q =
2

3
Y 62 ac plane!
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Figure S1. Harmonic honeycomb lattice series H hNi, where N refers to the number of complete honeycomb rows along the c axis1,2. (a) N = 0
(hyperhoneycomb), (b) N = 1 (stripyhoneycomb), (c) N ! 1 (honeycomb), (d-f) building blocks for general N. x, y, and z bonds are marked
in red, green, and blue. The labels “±” refer to the signs of the � interaction on the di↵erent bonds.

(a) (b)

Figure S2. Signs of the � interaction on the di↵erent bonds in the
projected hyperhoneycomb-lattice (a) and stripyhoneycomb-lattice
(b) models. x, y, and z bonds are marked in red, green, and blue.
Dashed rectangles indicate the four-site (a) and eight-site (b) prim-
itive unit cells, respectively. The black and orange sites in (a) refer
to the unitary transformation that removes the sign structure as ex-
plained in the text.

ter become fourth-neighbor bonds. Similarly, third-neighbor
bonds (according to Euclidean distance) become either third-
neighbor or sixth-neighbor bonds upon projection. This is il-
lustrated in Fig. S3.

Of course, the quantum chemistry underlying the actual ex-
change couplings (direct exchange vs. superexchange etc.),
which in most cases also involves non-magnetic ions placed
in between the magnetic ones, may discriminate symmetry-
inequivalent bonds of the same Euclidean length. This physics

central site

nearest neighbor

2nd-nearest neighbor

3rd-nearest neighbor

⇥2

⇥2
⇥2

⇥2

Figure S3. Projection of nearest-, second-nearest-, and third-nearest-
neighbor interactions of an arbitrary central site on the hyperhoney-
comb lattice. Under the projection, nearest neighbors remain near-
est neighbors, while second-nearest (third-nearest) neighbors map to
second- and fourth-nearest (third- and sixth-) nearest neighbors on
the honeycomb lattice. “⇥2” indicates cases in which two hyperhon-
eycomb sites map to the same honeycomb sites.

is specific to each particular compound and requires ab-initio

consideration that are beyond the scope of this paper.

II. CLASSICAL PHASES AND PHASE DIAGRAMS

Here we describe the methods used to determine the classi-
cal phase diagrams shown in Figs. 2 and 3 of the main paper.
Due to the di↵erent nature of the expected phases we have
used di↵erent methods in the two cases.

hyperhoneycomb

2 different types of x and y bonds
… but same local environment 

… choose interactions accordingly
[Lee & Kim, PRB ’15]
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Figure 2. Phase diagram of the classical HK model in a magnetic field h along the [111] / (x̂+ŷ+ẑ)/
p

3 direction for T ! 0, with J = A cos',
K = 2A sin' [32], and the radial direction representing the field strength h, with h/(AS ) = 1, 2, 3, 4, 5 from outer to inner gray circles, on the
(a) hyperhoneycomb lattice and (b) honeycomb lattice. The latter agrees with the previous analysis [25, 36], with the exception of small regions
for which the true ground state has incommensurate ordering wavevectors. Thick (thin) black lines denote first-order (second-order) phase
transitions. Except for the 3D spiral phase, for which a representative spin configuration is shown in (c), all phases of the hyperhoneycomb
lattice have a 2D analogue with exactly the same ground-state energy. (d) Order parameters in Néel and zigzag phases from linear spin-wave
theory for S = 1/2 and zero field, comparing the hyperhoneycomb (solid) and honeycomb (dashed) lattices.
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where ↵ and � label the two remaining directions on a � bond.
On the hyperhoneycomb lattice, there are two inequivalent
types of pairwise parallel x (y) bonds, denoted as x and x

0

(y and y
0), respectively, while all z bonds are equivalent; see

Fig. 1(a). We take the upper (lower) sign in front of the �
interaction on x, y, and z (x

0 and y
0) bonds; this choice can

be justified microscopically [52]. Applying the 3D–2D map-
ping to this model, which we dub HK±� model, we see that
it corresponds to an unusual 2D model. Compared to the
Heisenberg-Kitaev-� (HK�) model typically considered for
2D Kitaev materials, this has a supermodulation in the � inter-
action. Importantly, in the presence of sizable � interactions,
incommensurate states appear [12, 52].

Despite these complications, the concept of the 3D–2D
mapping continues to apply. We illustrate this in Fig. 3, where
we show the classical phase diagrams of the HK±� model at
zero field for the hyperhoneycomb and honeycomb lattices.
These have been obtained via a combination of a Luttinger-
Tisza analysis and a single-Q ansatz (as the finite-cluster min-
imization does not capture incommensurate states); see the
SM for details [28]. Our result on the hyperhoneycomb lat-
tice agrees with the previous work [52], except for a small re-
gion around the AFabc phase, for which the true ground state
may be a multi-Q state that is beyond our ansatz. Again, the
3D and 2D phase diagrams agree quantitatively, with the ex-
ception of the SPb± and AFabc phases, which appear only in
panel (a) and are thus genuinely 3D. This result is particu-

larly striking for the counterrotating spiral SPa± phases, for
which the ground state is incommensurate, but with an order-
ing wavevector Q k a⇤, i.e., within the ac plane; cf. Fig. 3(c,d).
This phase includes the ground state realized in �-Li2IrO3
[17, 52–55], such that 3D–2D mapping directly applies to this
material.

For completeness, we note that the 3D–2D mapping can
be extended to interactions beyond nearest neighbors. For
instance, second-neighbor interactions on the hyperhoney-
comb lattice are mapped to a combination of second- and
fourth-neighbor interactions on the honeycomb lattice, third-
neighbor interactions map to third- and sixth-neighbor inter-
actions; for details see the SM [28].

Beyond the classical limit. While the advertised qualita-

tive 3D–2D mapping of ordered states is very general, their
quantitative energetic equivalence only applies to the classi-
cal limit, S ! 1. We have therefore studied quantum e↵ects
in a systematic 1/S expansion using spin-wave theory. A first
remarkable insight is that the leading-order magnon spectra
also follow the 3D–2D mapping, i.e., the magnon energies in
both cases are identical for 3D wavevectors belonging to the
ac plane; this is demonstrated explicitly in the SM [28].

In Fig. 2(d), we display the order parameters (i.e., stag-
gered magnetizations) evaluated for S = 1/2 in the Néel and
zigzag phases of the HK model at zero field, comparing the
hyperhoneycomb and honeycomb lattices. In the hyperhon-
eycomb case, the quantum corrections to the classical value
Mstagg = 1/2 are smaller, but the overall shape of the order pa-
rameter as function of ' = arg(2J + iK) is similar to those of
the honeycomb lattice. In particular, in linear spin-wave the-
ory, the critical values of ' at which the order parameters van-
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Figure 3. Phase diagram of the classical HK±� model for T ! 0, with J = A sin ✓ cos', K = A sin ✓ sin', and � = A cos ✓  0 [32] on the (a)
hyperhoneycomb lattice [52] and (b) honeycomb lattice. Hatched regions in (a) denote genuine 3D phases with ordering wavevectors outside
the ac plane. The white dashed line indicates the regions in which the Luttinger-Tisza approach fails to satisfy the local length constraint and
a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).

ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.

We thank N. B. Perkins for enlightening discussions and E.
C. Andrade for collaboration on earlier related work. This re-
search was supported by the DFG through SFB 1143 (project
id 247310070) and the Würzburg-Dresden Cluster of Excel-
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Figure 3. Phase diagram of the classical HK±� model for T ! 0, with J = A sin ✓ cos', K = A sin ✓ sin', and � = A cos ✓  0 [32] on the (a)
hyperhoneycomb lattice [52] and (b) honeycomb lattice. Hatched regions in (a) denote genuine 3D phases with ordering wavevectors outside
the ac plane. The white dashed line indicates the regions in which the Luttinger-Tisza approach fails to satisfy the local length constraint and
a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).

ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.
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h = 0

3D spiral
ẑ

Figure 2. Phase diagram of the classical HK model in a magnetic field h along the [111] / (x̂+ŷ+ẑ)/
p

3 direction for T ! 0, with J = A cos',
K = 2A sin' [32], and the radial direction representing the field strength h, with h/(AS ) = 1, 2, 3, 4, 5 from outer to inner gray circles, on the
(a) hyperhoneycomb lattice and (b) honeycomb lattice. The latter agrees with the previous analysis [25, 36], with the exception of small regions
for which the true ground state has incommensurate ordering wavevectors. Thick (thin) black lines denote first-order (second-order) phase
transitions. Except for the 3D spiral phase, for which a representative spin configuration is shown in (c), all phases of the hyperhoneycomb
lattice have a 2D analogue with exactly the same ground-state energy. (d) Order parameters in Néel and zigzag phases from linear spin-wave
theory for S = 1/2 and zero field, comparing the hyperhoneycomb (solid) and honeycomb (dashed) lattices.

Hamiltonian
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JSi · S j + KS
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where ↵ and � label the two remaining directions on a � bond.
On the hyperhoneycomb lattice, there are two inequivalent
types of pairwise parallel x (y) bonds, denoted as x and x

0

(y and y
0), respectively, while all z bonds are equivalent; see

Fig. 1(a). We take the upper (lower) sign in front of the �
interaction on x, y, and z (x

0 and y
0) bonds; this choice can

be justified microscopically [52]. Applying the 3D–2D map-
ping to this model, which we dub HK±� model, we see that
it corresponds to an unusual 2D model. Compared to the
Heisenberg-Kitaev-� (HK�) model typically considered for
2D Kitaev materials, this has a supermodulation in the � inter-
action. Importantly, in the presence of sizable � interactions,
incommensurate states appear [12, 52].

Despite these complications, the concept of the 3D–2D
mapping continues to apply. We illustrate this in Fig. 3, where
we show the classical phase diagrams of the HK±� model at
zero field for the hyperhoneycomb and honeycomb lattices.
These have been obtained via a combination of a Luttinger-
Tisza analysis and a single-Q ansatz (as the finite-cluster min-
imization does not capture incommensurate states); see the
SM for details [28]. Our result on the hyperhoneycomb lat-
tice agrees with the previous work [52], except for a small re-
gion around the AFabc phase, for which the true ground state
may be a multi-Q state that is beyond our ansatz. Again, the
3D and 2D phase diagrams agree quantitatively, with the ex-
ception of the SPb± and AFabc phases, which appear only in
panel (a) and are thus genuinely 3D. This result is particu-

larly striking for the counterrotating spiral SPa± phases, for
which the ground state is incommensurate, but with an order-
ing wavevector Q k a⇤, i.e., within the ac plane; cf. Fig. 3(c,d).
This phase includes the ground state realized in �-Li2IrO3
[17, 52–55], such that 3D–2D mapping directly applies to this
material.

For completeness, we note that the 3D–2D mapping can
be extended to interactions beyond nearest neighbors. For
instance, second-neighbor interactions on the hyperhoney-
comb lattice are mapped to a combination of second- and
fourth-neighbor interactions on the honeycomb lattice, third-
neighbor interactions map to third- and sixth-neighbor inter-
actions; for details see the SM [28].

Beyond the classical limit. While the advertised qualita-

tive 3D–2D mapping of ordered states is very general, their
quantitative energetic equivalence only applies to the classi-
cal limit, S ! 1. We have therefore studied quantum e↵ects
in a systematic 1/S expansion using spin-wave theory. A first
remarkable insight is that the leading-order magnon spectra
also follow the 3D–2D mapping, i.e., the magnon energies in
both cases are identical for 3D wavevectors belonging to the
ac plane; this is demonstrated explicitly in the SM [28].

In Fig. 2(d), we display the order parameters (i.e., stag-
gered magnetizations) evaluated for S = 1/2 in the Néel and
zigzag phases of the HK model at zero field, comparing the
hyperhoneycomb and honeycomb lattices. In the hyperhon-
eycomb case, the quantum corrections to the classical value
Mstagg = 1/2 are smaller, but the overall shape of the order pa-
rameter as function of ' = arg(2J + iK) is similar to those of
the honeycomb lattice. In particular, in linear spin-wave the-
ory, the critical values of ' at which the order parameters van-
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Néel
FM-SZFM

SPa�

SPb�

skew
strip

y
ferromagnet

SPb+

SZb

SZx/y

✓
=

5⇡
/8

3⇡
/4

7⇡
/8

�  0

AFa

FM-ZFM

SPa+

Zb

(b) �  0
zigzag

Néel
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Figure 3. Phase diagram of the classical HK±� model for T ! 0, with J = A sin ✓ cos', K = A sin ✓ sin', and � = A cos ✓  0 [32] on the (a)
hyperhoneycomb lattice [52] and (b) honeycomb lattice. Hatched regions in (a) denote genuine 3D phases with ordering wavevectors outside
the ac plane. The white dashed line indicates the regions in which the Luttinger-Tisza approach fails to satisfy the local length constraint and
a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).

ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.
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Figure 2. Phase diagram of the classical HK model in a magnetic field h along the [111] / (x̂+ŷ+ẑ)/
p

3 direction for T ! 0, with J = A cos',
K = 2A sin' [32], and the radial direction representing the field strength h, with h/(AS ) = 1, 2, 3, 4, 5 from outer to inner gray circles, on the
(a) hyperhoneycomb lattice and (b) honeycomb lattice. The latter agrees with the previous analysis [25, 36], with the exception of small regions
for which the true ground state has incommensurate ordering wavevectors. Thick (thin) black lines denote first-order (second-order) phase
transitions. Except for the 3D spiral phase, for which a representative spin configuration is shown in (c), all phases of the hyperhoneycomb
lattice have a 2D analogue with exactly the same ground-state energy. (d) Order parameters in Néel and zigzag phases from linear spin-wave
theory for S = 1/2 and zero field, comparing the hyperhoneycomb (solid) and honeycomb (dashed) lattices.

Hamiltonian

HHK� =
X

hi ji�

h
JSi · S j + KS

�
i
S
�
j
± �
⇣
S
↵
i
S
�
j
+ S

�
i
S
↵
j

⌘i
, (2)

where ↵ and � label the two remaining directions on a � bond.
On the hyperhoneycomb lattice, there are two inequivalent
types of pairwise parallel x (y) bonds, denoted as x and x

0

(y and y
0), respectively, while all z bonds are equivalent; see

Fig. 1(a). We take the upper (lower) sign in front of the �
interaction on x, y, and z (x

0 and y
0) bonds; this choice can

be justified microscopically [52]. Applying the 3D–2D map-
ping to this model, which we dub HK±� model, we see that
it corresponds to an unusual 2D model. Compared to the
Heisenberg-Kitaev-� (HK�) model typically considered for
2D Kitaev materials, this has a supermodulation in the � inter-
action. Importantly, in the presence of sizable � interactions,
incommensurate states appear [12, 52].

Despite these complications, the concept of the 3D–2D
mapping continues to apply. We illustrate this in Fig. 3, where
we show the classical phase diagrams of the HK±� model at
zero field for the hyperhoneycomb and honeycomb lattices.
These have been obtained via a combination of a Luttinger-
Tisza analysis and a single-Q ansatz (as the finite-cluster min-
imization does not capture incommensurate states); see the
SM for details [28]. Our result on the hyperhoneycomb lat-
tice agrees with the previous work [52], except for a small re-
gion around the AFabc phase, for which the true ground state
may be a multi-Q state that is beyond our ansatz. Again, the
3D and 2D phase diagrams agree quantitatively, with the ex-
ception of the SPb± and AFabc phases, which appear only in
panel (a) and are thus genuinely 3D. This result is particu-

larly striking for the counterrotating spiral SPa± phases, for
which the ground state is incommensurate, but with an order-
ing wavevector Q k a⇤, i.e., within the ac plane; cf. Fig. 3(c,d).
This phase includes the ground state realized in �-Li2IrO3
[17, 52–55], such that 3D–2D mapping directly applies to this
material.

For completeness, we note that the 3D–2D mapping can
be extended to interactions beyond nearest neighbors. For
instance, second-neighbor interactions on the hyperhoney-
comb lattice are mapped to a combination of second- and
fourth-neighbor interactions on the honeycomb lattice, third-
neighbor interactions map to third- and sixth-neighbor inter-
actions; for details see the SM [28].

Beyond the classical limit. While the advertised qualita-

tive 3D–2D mapping of ordered states is very general, their
quantitative energetic equivalence only applies to the classi-
cal limit, S ! 1. We have therefore studied quantum e↵ects
in a systematic 1/S expansion using spin-wave theory. A first
remarkable insight is that the leading-order magnon spectra
also follow the 3D–2D mapping, i.e., the magnon energies in
both cases are identical for 3D wavevectors belonging to the
ac plane; this is demonstrated explicitly in the SM [28].

In Fig. 2(d), we display the order parameters (i.e., stag-
gered magnetizations) evaluated for S = 1/2 in the Néel and
zigzag phases of the HK model at zero field, comparing the
hyperhoneycomb and honeycomb lattices. In the hyperhon-
eycomb case, the quantum corrections to the classical value
Mstagg = 1/2 are smaller, but the overall shape of the order pa-
rameter as function of ' = arg(2J + iK) is similar to those of
the honeycomb lattice. In particular, in linear spin-wave the-
ory, the critical values of ' at which the order parameters van-
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Figure 3. Phase diagram of the classical HK±� model for T ! 0, with J = A sin ✓ cos', K = A sin ✓ sin', and � = A cos ✓  0 [32] on the (a)
hyperhoneycomb lattice [52] and (b) honeycomb lattice. Hatched regions in (a) denote genuine 3D phases with ordering wavevectors outside
the ac plane. The white dashed line indicates the regions in which the Luttinger-Tisza approach fails to satisfy the local length constraint and
a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).

ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.
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ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.
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ĉ⇤

Y0

(a)

z
y0 x0

ẑ
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Figure 1. (a) Hyperhoneycomb lattice with magnetic skew-zigzag
state and (b) honeycomb lattice with zigzag state; both are equiv-
alent as explained in the text. (c) Hyperhoneycomb lattice viewed
from the crystallographic b̂ direction, illustrating its projection onto
an elongated honeycomb lattice. Colored balls indicate spin direc-
tions. (d) Brillouin zones of the hyperhoneycomb lattice (black) and
the elongated honeycomb lattice (red dashed). 3D states with or-
dering wavevectors in the ac plane can be transformed into equiva-
lent 2D states on the honeycomb lattice. The quarters of the front
hexagon (such as the green quadrangle) can be shifted with recipro-
cal lattice vectors to the ac plane and form, together with the ac-plane
cut of the first Brillouin zone, a rectangle (black dashed). The latter
becomes the 2D Brillouin zone of the elongated honeycomb lattice if
a four-site unit cell is chosen. All high-symmetry points shown are
quasi-2D.

honeycomb lattice. It is thus possible to construct states (e.g.,
skew-zigzag states) that do not break the translation symmetry
on the hyperhoneycomb lattice, although their 2D projections
break the honeycomb translation symmetry.

Further insight is gained in reciprocal space. All high-
symmetry points displayed in Fig. 1(d) have a vanishing com-
ponent along the direction of the reciprocal lattice vector b⇤
(up to reciprocal-lattice translations). States with ordering
wavevectors at these high-symmetry points thus exhibit no
modulation along the b axis in real space and are quasi-2D:
Their projection onto the ac plane yields states on the hon-
eycomb lattice with the exact same classical energy. This ap-
plies to all ordered phases in the nearest-neighbor Heisenberg-
Kitaev (HK) model in zero field. Upon the inclusion of other
symmetry-allowed interactions, as well as in a magnetic field,
Kitaev systems also stabilize multi-Q and incommensurate
states. We will show that even such more exotic states, in-
cluding the counterrotating spiral states that are realized in
the di↵erent Li2IrO3 polytypes, are quasi-2D. Moreover, the
3D–2D mapping discussed here for the hyperhoneycomb lat-
tice can be extended to the full harmonic honeycomb series,
for details see the supplemental material (SM) [28].

Heisenberg-Kitaev model in a magnetic field. To illustrate
the power of the advertised mapping, we consider the spin-S

HK Hamiltonian [11, 13] in a uniform magnetic field h,

HHK = J

X

hi ji

Si · S j + K

X

hi ji�

S
�
i
S
�
j
� h ·

X

i

Si, (1)

where � 2 {x, y, z} labels the three di↵erent types of bonds on
the lattice. The couplings are conventionally parameterized
as J = A cos' and K = 2A sin', where A > 0 is an overall
energy scale [32]. The 2D model on the honeycomb lattice
has been studied intensely, see Refs. 3, 33–35 for reviews. For
non-zero field, the classical phase diagram (i.e., for S ! 1)
of this and related models has been determined [25, 36–38],
and the S = 1/2 case has also been studied [39–48]. The 3D
model on the hyperhoneycomb lattice has been considered in
Refs. 26 and 49.

Here we have determined the phase diagram of the classical
HK model in a magnetic field using a combination of high-
field spin-wave theory and classical energy minimization. On
the hyperhoneycomb lattice, the number of possible geome-
tries of the magnetic unit cell drastically increases with its
size. For reasons of numerical feasibility and consistency, we
have restricted the numerical energy minimization in both the
2D and 3D cases to states with up to 12 sites in the magnetic
unit cell, but have included all possible unit-cell geometries;
for details see the SM [28]. Our findings on the honeycomb
lattice are consistent with the previous analysis [25, 50].

The result, comparing the hyperhoneycomb and honey-
comb cases for a field along the [111] / (x̂ + ŷ + ẑ)/

p
3

direction, is displayed in Fig. 2. The various phases are char-
acterized in the SM [28]. Remarkably, both phase diagrams
agree quantitatively, with the exception of the 3D spiral phase,
which appears only in the 3D case of panel (a). Inspecting the
individual phases, we see that all phases except the 3D spi-
ral have ordering wavevectors located in the ac plane, such
that 3D–2D mapping applies, whereas the 3D spiral phase has
Q = 2

3 Y, evading the mapping. The latter is hence a gen-
uine 3D phase, with a 12-site magnetic unit cell, and we have
illustrated its spin configuration in Fig. 2(c).

We have also determined the phase diagram of the hyper-
honeycomb model in a field along the [001] / ẑ direction, for
which all in-field ordered states are simply canted versions
of the zero-field orders, without any field-induced intermedi-
ate phases, in complete quantitative equivalence with the 2D
honeycomb-lattice result [25].

We note that early work on the hyperhoneycomb-HK model
in a magnetic field [49] missed the nontrivial field-induced
phases found here. We have explicitly checked that our novel
intermediate phases have lower energies than the canted skew-
zigzag and skew-stripy states suggested in Ref. 49.
� and other interactions. For actual Kitaev materials, it

has been shown that, in addition to nearest-neighbor Kitaev
and Heisenberg interactions, also symmetric o↵-diagonal in-
teractions, commonly dubbed � interactions, are important
[12, 37, 51–55]. To model �-Li2IrO3, we hence consider the

⇒ “quasi-2D” state

Q k a⇤ 2 ac plane!
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Figure 3. Phase diagram of the classical HK±� model for T ! 0, with J = A sin ✓ cos', K = A sin ✓ sin', and � = A cos ✓  0 [32] on the (a)
hyperhoneycomb lattice [52] and (b) honeycomb lattice. Hatched regions in (a) denote genuine 3D phases with ordering wavevectors outside
the ac plane. The white dashed line indicates the regions in which the Luttinger-Tisza approach fails to satisfy the local length constraint and
a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).

ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.
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Figure 1. (a) Hyperhoneycomb lattice with magnetic skew-zigzag
state and (b) honeycomb lattice with zigzag state; both are equiv-
alent as explained in the text. (c) Hyperhoneycomb lattice viewed
from the crystallographic b̂ direction, illustrating its projection onto
an elongated honeycomb lattice. Colored balls indicate spin direc-
tions. (d) Brillouin zones of the hyperhoneycomb lattice (black) and
the elongated honeycomb lattice (red dashed). 3D states with or-
dering wavevectors in the ac plane can be transformed into equiva-
lent 2D states on the honeycomb lattice. The quarters of the front
hexagon (such as the green quadrangle) can be shifted with recipro-
cal lattice vectors to the ac plane and form, together with the ac-plane
cut of the first Brillouin zone, a rectangle (black dashed). The latter
becomes the 2D Brillouin zone of the elongated honeycomb lattice if
a four-site unit cell is chosen. All high-symmetry points shown are
quasi-2D.

honeycomb lattice. It is thus possible to construct states (e.g.,
skew-zigzag states) that do not break the translation symmetry
on the hyperhoneycomb lattice, although their 2D projections
break the honeycomb translation symmetry.

Further insight is gained in reciprocal space. All high-
symmetry points displayed in Fig. 1(d) have a vanishing com-
ponent along the direction of the reciprocal lattice vector b⇤
(up to reciprocal-lattice translations). States with ordering
wavevectors at these high-symmetry points thus exhibit no
modulation along the b axis in real space and are quasi-2D:
Their projection onto the ac plane yields states on the hon-
eycomb lattice with the exact same classical energy. This ap-
plies to all ordered phases in the nearest-neighbor Heisenberg-
Kitaev (HK) model in zero field. Upon the inclusion of other
symmetry-allowed interactions, as well as in a magnetic field,
Kitaev systems also stabilize multi-Q and incommensurate
states. We will show that even such more exotic states, in-
cluding the counterrotating spiral states that are realized in
the di↵erent Li2IrO3 polytypes, are quasi-2D. Moreover, the
3D–2D mapping discussed here for the hyperhoneycomb lat-
tice can be extended to the full harmonic honeycomb series,
for details see the supplemental material (SM) [28].

Heisenberg-Kitaev model in a magnetic field. To illustrate
the power of the advertised mapping, we consider the spin-S

HK Hamiltonian [11, 13] in a uniform magnetic field h,

HHK = J

X

hi ji

Si · S j + K

X

hi ji�

S
�
i
S
�
j
� h ·

X

i

Si, (1)

where � 2 {x, y, z} labels the three di↵erent types of bonds on
the lattice. The couplings are conventionally parameterized
as J = A cos' and K = 2A sin', where A > 0 is an overall
energy scale [32]. The 2D model on the honeycomb lattice
has been studied intensely, see Refs. 3, 33–35 for reviews. For
non-zero field, the classical phase diagram (i.e., for S ! 1)
of this and related models has been determined [25, 36–38],
and the S = 1/2 case has also been studied [39–48]. The 3D
model on the hyperhoneycomb lattice has been considered in
Refs. 26 and 49.

Here we have determined the phase diagram of the classical
HK model in a magnetic field using a combination of high-
field spin-wave theory and classical energy minimization. On
the hyperhoneycomb lattice, the number of possible geome-
tries of the magnetic unit cell drastically increases with its
size. For reasons of numerical feasibility and consistency, we
have restricted the numerical energy minimization in both the
2D and 3D cases to states with up to 12 sites in the magnetic
unit cell, but have included all possible unit-cell geometries;
for details see the SM [28]. Our findings on the honeycomb
lattice are consistent with the previous analysis [25, 50].

The result, comparing the hyperhoneycomb and honey-
comb cases for a field along the [111] / (x̂ + ŷ + ẑ)/

p
3

direction, is displayed in Fig. 2. The various phases are char-
acterized in the SM [28]. Remarkably, both phase diagrams
agree quantitatively, with the exception of the 3D spiral phase,
which appears only in the 3D case of panel (a). Inspecting the
individual phases, we see that all phases except the 3D spi-
ral have ordering wavevectors located in the ac plane, such
that 3D–2D mapping applies, whereas the 3D spiral phase has
Q = 2

3 Y, evading the mapping. The latter is hence a gen-
uine 3D phase, with a 12-site magnetic unit cell, and we have
illustrated its spin configuration in Fig. 2(c).

We have also determined the phase diagram of the hyper-
honeycomb model in a field along the [001] / ẑ direction, for
which all in-field ordered states are simply canted versions
of the zero-field orders, without any field-induced intermedi-
ate phases, in complete quantitative equivalence with the 2D
honeycomb-lattice result [25].

We note that early work on the hyperhoneycomb-HK model
in a magnetic field [49] missed the nontrivial field-induced
phases found here. We have explicitly checked that our novel
intermediate phases have lower energies than the canted skew-
zigzag and skew-stripy states suggested in Ref. 49.
� and other interactions. For actual Kitaev materials, it

has been shown that, in addition to nearest-neighbor Kitaev
and Heisenberg interactions, also symmetric o↵-diagonal in-
teractions, commonly dubbed � interactions, are important
[12, 37, 51–55]. To model �-Li2IrO3, we hence consider the

Q k a⇤ 2 ac plane!
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Néel

FM-SZFM

SPa�

SPb�

skew
strip

y
ferromagnet

SPb+

SZb

SZx/y

✓
=

5⇡
/8

3⇡
/4

7⇡
/8

�  0

AFa

FM-ZFM

SPa+

Zb

(b) �  0
zigzag

Néel
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Figure 3. Phase diagram of the classical HK±� model for T ! 0, with J = A sin ✓ cos', K = A sin ✓ sin', and � = A cos ✓  0 [32] on the (a)
hyperhoneycomb lattice [52] and (b) honeycomb lattice. Hatched regions in (a) denote genuine 3D phases with ordering wavevectors outside
the ac plane. The white dashed line indicates the regions in which the Luttinger-Tisza approach fails to satisfy the local length constraint and
a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).

ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.
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Figs. 2(b)–2(e). These states occupy large regions of phase
space even as Γ is introduced, with the AFM and FM states
covering most the phase diagram. Finite Γ breaks the
accidental spin rotational symmetry enjoyed by the FM and
AFM states in the (classical) HK limit, pinning the order-
ings to fixed spatial direction. For Γ > 0, the AFM state
becomes pinned along the [111] direction whereas the FM
state lies in the plane perpendicular to [111] with all
directions degenerate. The stripy and zigzag phases have
the spins in directions x, y; or z locked to the orientations of
the stripe and zigzag pattern, tilting slightly away from the
stripe and zigzag direction as Γ becomes nonzero.
The effects of Γ are most evident where a large

classical degeneracy is present, such as near the Kitaev
points at ðϕ; θÞ ¼ ð$π=2; π=2Þ and near (0,0), where we

only have the bond-dependent Γ term. Here, two new
states are introduced: 120° order and an incommensurate
spiral. The 120° order with wave vector Q⃗ ¼ K appears
near the (antiferromagnetic) Kitaev limit at (π=2, π=2).
This is a coplanar spiral, with the spins lying in the
plane perpendicular to [111]. The spins are at relative
angles 0, $2π=3 on the same sublattice [as shown in
Fig. 2(f)], with the relative angle between sublattices
unconstrained. An additional degenerate point appears at
ðϕ; θÞ ¼ ð3π=4; cos−1ð1=

ffiffiffi
3

p
ÞÞwhere J ¼ −K ¼ −Γ, with

the 120°, FM, and zigzag phases meeting at a single point
[40]. The second large region of zigzag phase appearing
when Γ ≫ jJj, jKj has the spins predominantly oriented
along the [11̄ 1̄], [1̄11̄], and [1̄ 1̄ 1] directions, tilting away
slightly as one explores the phase. The IS phase remains
coplanar despite the Q⃗ vector varying throughout the
phase. The magnitude of the IS wave vector lies in the
range 1:2 < jQ⃗j < 1:8 as shown in Fig. 2(g).

Exact diagonalization.—To gain an understanding of
the features of the classical results that carry over to the full
quantum mechanical model, we have performed exact
diagonalization. We consider a 24-site cluster that has
been used previously to study the HK model [13,18,19],
providing a reasonable description of the phases found at
the classical level as well as the Kitaev spin liquids. In the
HK limit, the existence of a local spin rotation [13,41] that
maps J → −J andK → K þ 2J gives four well-understood
magnetic limits in addition to the two exactly solvable
Kitaev points. These are the FM, AFM, and their zigzag
and stripy images under the mapping. This transformation
is no longer useful as Γ is included [42], but the phases
surrounding these points can still be identified with each
respective limit. While the IS phase is unlikely to be well
represented on such a small cluster, the remaining phases
such as the 120° phase are compatible with the cluster
geometry. We note that the transformation used to relate
Γ > 0 to Γ < 0 no longer applies in the quantum case, and
so both regions must be analyzed separately.
To identify the phase boundaries, we have computed the

second derivatives of the ground-state energy, −∂2E=∂ϕ2

and −∂2E=∂θ2, looking for singular features that indicate
changes in the ground-state characteristics. Phases con-
taining exactly solvable or well-understood points, such as
the zigzag, stripy, AFM, FM, and the Kitaev spin liquids
can be readily identified. The remaining phases were
identified by examining the spin-spin correlation functions
hSαi S

β
j i, primarily through the static structure factor

SQ ¼ 1

N

X

ij

eiQ⃗·ðr⃗i−r⃗jÞhS⃗i · S⃗ji (8)

in both the original basis and after applying the local spin
rotation discussed above [13]. The resulting phase dia-
grams for Γ > 0 and Γ < 0 are presented in Fig. 3, with
the structure factor for each phase plotted using the colors
from Fig. 2(a) and then overlayed. Contours indicating

FIG. 2 (color online). (a) Combined Luttinger-Tisza and single-
Q analysis. Solid colors correspond to exact classical ground
states from Luttinger-Tisza while the region indicated by the
white dashed line is the single-Q results. [(b)—(f)] Ground-state
spin configurations in each phase. (g) Magnitude of the ordering
wave vector Q⃗ in the IS phase.
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Figure 3. Phase diagram of the classical HK±� model for T ! 0, with J = A sin ✓ cos', K = A sin ✓ sin', and � = A cos ✓  0 [32] on the (a)
hyperhoneycomb lattice [52] and (b) honeycomb lattice. Hatched regions in (a) denote genuine 3D phases with ordering wavevectors outside
the ac plane. The white dashed line indicates the regions in which the Luttinger-Tisza approach fails to satisfy the local length constraint and
a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).

ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.
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a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).

ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.
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Figs. 2(b)–2(e). These states occupy large regions of phase
space even as Γ is introduced, with the AFM and FM states
covering most the phase diagram. Finite Γ breaks the
accidental spin rotational symmetry enjoyed by the FM and
AFM states in the (classical) HK limit, pinning the order-
ings to fixed spatial direction. For Γ > 0, the AFM state
becomes pinned along the [111] direction whereas the FM
state lies in the plane perpendicular to [111] with all
directions degenerate. The stripy and zigzag phases have
the spins in directions x, y; or z locked to the orientations of
the stripe and zigzag pattern, tilting slightly away from the
stripe and zigzag direction as Γ becomes nonzero.
The effects of Γ are most evident where a large

classical degeneracy is present, such as near the Kitaev
points at ðϕ; θÞ ¼ ð$π=2; π=2Þ and near (0,0), where we

only have the bond-dependent Γ term. Here, two new
states are introduced: 120° order and an incommensurate
spiral. The 120° order with wave vector Q⃗ ¼ K appears
near the (antiferromagnetic) Kitaev limit at (π=2, π=2).
This is a coplanar spiral, with the spins lying in the
plane perpendicular to [111]. The spins are at relative
angles 0, $2π=3 on the same sublattice [as shown in
Fig. 2(f)], with the relative angle between sublattices
unconstrained. An additional degenerate point appears at
ðϕ; θÞ ¼ ð3π=4; cos−1ð1=

ffiffiffi
3

p
ÞÞwhere J ¼ −K ¼ −Γ, with

the 120°, FM, and zigzag phases meeting at a single point
[40]. The second large region of zigzag phase appearing
when Γ ≫ jJj, jKj has the spins predominantly oriented
along the [11̄ 1̄], [1̄11̄], and [1̄ 1̄ 1] directions, tilting away
slightly as one explores the phase. The IS phase remains
coplanar despite the Q⃗ vector varying throughout the
phase. The magnitude of the IS wave vector lies in the
range 1:2 < jQ⃗j < 1:8 as shown in Fig. 2(g).

Exact diagonalization.—To gain an understanding of
the features of the classical results that carry over to the full
quantum mechanical model, we have performed exact
diagonalization. We consider a 24-site cluster that has
been used previously to study the HK model [13,18,19],
providing a reasonable description of the phases found at
the classical level as well as the Kitaev spin liquids. In the
HK limit, the existence of a local spin rotation [13,41] that
maps J → −J andK → K þ 2J gives four well-understood
magnetic limits in addition to the two exactly solvable
Kitaev points. These are the FM, AFM, and their zigzag
and stripy images under the mapping. This transformation
is no longer useful as Γ is included [42], but the phases
surrounding these points can still be identified with each
respective limit. While the IS phase is unlikely to be well
represented on such a small cluster, the remaining phases
such as the 120° phase are compatible with the cluster
geometry. We note that the transformation used to relate
Γ > 0 to Γ < 0 no longer applies in the quantum case, and
so both regions must be analyzed separately.
To identify the phase boundaries, we have computed the

second derivatives of the ground-state energy, −∂2E=∂ϕ2

and −∂2E=∂θ2, looking for singular features that indicate
changes in the ground-state characteristics. Phases con-
taining exactly solvable or well-understood points, such as
the zigzag, stripy, AFM, FM, and the Kitaev spin liquids
can be readily identified. The remaining phases were
identified by examining the spin-spin correlation functions
hSαi S

β
j i, primarily through the static structure factor

SQ ¼ 1

N

X

ij

eiQ⃗·ðr⃗i−r⃗jÞhS⃗i · S⃗ji (8)

in both the original basis and after applying the local spin
rotation discussed above [13]. The resulting phase dia-
grams for Γ > 0 and Γ < 0 are presented in Fig. 3, with
the structure factor for each phase plotted using the colors
from Fig. 2(a) and then overlayed. Contours indicating

FIG. 2 (color online). (a) Combined Luttinger-Tisza and single-
Q analysis. Solid colors correspond to exact classical ground
states from Luttinger-Tisza while the region indicated by the
white dashed line is the single-Q results. [(b)—(f)] Ground-state
spin configurations in each phase. (g) Magnitude of the ordering
wave vector Q⃗ in the IS phase.
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Figure 3. Phase diagram of the classical HK±� model for T ! 0, with J = A sin ✓ cos', K = A sin ✓ sin', and � = A cos ✓  0 [32] on the (a)
hyperhoneycomb lattice [52] and (b) honeycomb lattice. Hatched regions in (a) denote genuine 3D phases with ordering wavevectors outside
the ac plane. The white dashed line indicates the regions in which the Luttinger-Tisza approach fails to satisfy the local length constraint and
a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).

ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.
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Figure 3. Phase diagram of the classical HK±� model for T ! 0, with J = A sin ✓ cos', K = A sin ✓ sin', and � = A cos ✓  0 [32] on the (a)
hyperhoneycomb lattice [52] and (b) honeycomb lattice. Hatched regions in (a) denote genuine 3D phases with ordering wavevectors outside
the ac plane. The white dashed line indicates the regions in which the Luttinger-Tisza approach fails to satisfy the local length constraint and
a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).

ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.
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FIG. 6. (Color online) (a) Projection of the magnetic structure on
the ac plane showing the sites 1–4 of the primitive cell. Left curly
arrows indicate counter-rotation of moments between consecutive
sites along c. In unit cell 2 light and dark shaded elliptical envelopes
indicate an alternating tilt of the plane of moments’ rotation away
from the ac face. In unit cell 3 the color of bonds shows the anisotropy
axis of the exchange in a Kitaev model [15] (ferromagnetic Ising
exchange for each bond, but with a different Ising axis x,y,z for
the black/green/red bonds). Right-hand labels (b)–(e) indicate where
slices through the magnetic structure are taken at different heights in
the unit cell and projected onto the ab plane to illustrate the direction
of the zigzag chains and the alternating tilt of the plane of rotation
away from the ac plane by ±φ between adjacent zigzag chains stacked
along c.

FIG. 7. (Color online) Projection of the iridium lattice on the
ac plane showing the ordering of the magnetic moment components
along the b axis only. Those are shown rotated (for ease of
visualization) from the b to the a axis and indicated by horizontal
red arrows (length of arrow indicates the b-axis moment component
at each site). Note the ferromagnetic alignment between the two sites
of each vertical (c-axis) bond.

presence of zero-point quantum fluctuations in the ground
state is provided by the fact that the absolute magnitude of the
ordered moment [0.47(1) µB] is significantly reduced from
what is believed to be the available full-moment value (esti-
mated at gµBJeff ≃ 1µB assuming g ≃ 2), so a structure with
small modulations on an already significantly reduced ordered
moment could be compatible with the experimental results.

IV. DISCUSSION

It is interesting to note that the obtained magnetic structure
has striking similarities with the magnetic structure in the
related polytype γ -Li2IrO3 [20], with which β-Li2IrO3 shares
the same size orthorhombic unit cell (a × b × c) and also
many key structural features. In both polytypes the iridium
lattice is locally threefold coordinated and is made up of
vertically linked zigzag chains that alternate in orientation
between the a ± b direction. The only difference between
them is that in the hyperhoneycomb β polytype this alternation
occurs between consecutive zigzag chains, whereas in the
stripyhoneycomb γ polytype the alternation occurs between
pairs of parallel zigzag chains (which form a honeycomb row).
The magnetic structures in both polytypes are incommensurate
with the same propagation vectors within experimental error,
q = (0.57(1),0,0), the moments are counter-rotating between
the sites of every nearest-neighbor bond, and the plane of
rotation alternates between two orientations tilted away (by
an angle φ) from the ac plane between consecutive zigzag
iridium chains vertically linked along the c- axis. The φ angle
was found to be somewhat smaller in γ -Li2IrO3, but apart
from this difference the magnetic structure in γ -Li2IrO3 can
be regarded as “equivalent” to that in β-Li2IrO3 but in a
different lattice setting (for a formal mapping see Appendix E).
Those similarities are strongly suggestive that the defining
features of the magnetic structure, namely non-coplanarity,
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Duality explains key features of β-Li2IrO3:  

(i) Zigzag chains of coplanar spins 

(ii) Counterrotating spirals 

(iii) Angle between next-nearest neighbors ≈ 120°

… as duality transformation preserves coplanarity along zigzag chains 

[Biffin et al. ’14]

… spins on two sublattices rotate in opposite directions 

… with ordering wavevector q = 0.57(1)a* ≈ 2/3a*

Figs. 2(b)–2(e). These states occupy large regions of phase
space even as Γ is introduced, with the AFM and FM states
covering most the phase diagram. Finite Γ breaks the
accidental spin rotational symmetry enjoyed by the FM and
AFM states in the (classical) HK limit, pinning the order-
ings to fixed spatial direction. For Γ > 0, the AFM state
becomes pinned along the [111] direction whereas the FM
state lies in the plane perpendicular to [111] with all
directions degenerate. The stripy and zigzag phases have
the spins in directions x, y; or z locked to the orientations of
the stripe and zigzag pattern, tilting slightly away from the
stripe and zigzag direction as Γ becomes nonzero.
The effects of Γ are most evident where a large

classical degeneracy is present, such as near the Kitaev
points at ðϕ; θÞ ¼ ð$π=2; π=2Þ and near (0,0), where we

only have the bond-dependent Γ term. Here, two new
states are introduced: 120° order and an incommensurate
spiral. The 120° order with wave vector Q⃗ ¼ K appears
near the (antiferromagnetic) Kitaev limit at (π=2, π=2).
This is a coplanar spiral, with the spins lying in the
plane perpendicular to [111]. The spins are at relative
angles 0, $2π=3 on the same sublattice [as shown in
Fig. 2(f)], with the relative angle between sublattices
unconstrained. An additional degenerate point appears at
ðϕ; θÞ ¼ ð3π=4; cos−1ð1=

ffiffiffi
3

p
ÞÞwhere J ¼ −K ¼ −Γ, with

the 120°, FM, and zigzag phases meeting at a single point
[40]. The second large region of zigzag phase appearing
when Γ ≫ jJj, jKj has the spins predominantly oriented
along the [11̄ 1̄], [1̄11̄], and [1̄ 1̄ 1] directions, tilting away
slightly as one explores the phase. The IS phase remains
coplanar despite the Q⃗ vector varying throughout the
phase. The magnitude of the IS wave vector lies in the
range 1:2 < jQ⃗j < 1:8 as shown in Fig. 2(g).

Exact diagonalization.—To gain an understanding of
the features of the classical results that carry over to the full
quantum mechanical model, we have performed exact
diagonalization. We consider a 24-site cluster that has
been used previously to study the HK model [13,18,19],
providing a reasonable description of the phases found at
the classical level as well as the Kitaev spin liquids. In the
HK limit, the existence of a local spin rotation [13,41] that
maps J → −J andK → K þ 2J gives four well-understood
magnetic limits in addition to the two exactly solvable
Kitaev points. These are the FM, AFM, and their zigzag
and stripy images under the mapping. This transformation
is no longer useful as Γ is included [42], but the phases
surrounding these points can still be identified with each
respective limit. While the IS phase is unlikely to be well
represented on such a small cluster, the remaining phases
such as the 120° phase are compatible with the cluster
geometry. We note that the transformation used to relate
Γ > 0 to Γ < 0 no longer applies in the quantum case, and
so both regions must be analyzed separately.
To identify the phase boundaries, we have computed the

second derivatives of the ground-state energy, −∂2E=∂ϕ2

and −∂2E=∂θ2, looking for singular features that indicate
changes in the ground-state characteristics. Phases con-
taining exactly solvable or well-understood points, such as
the zigzag, stripy, AFM, FM, and the Kitaev spin liquids
can be readily identified. The remaining phases were
identified by examining the spin-spin correlation functions
hSαi S

β
j i, primarily through the static structure factor

SQ ¼ 1

N

X

ij

eiQ⃗·ðr⃗i−r⃗jÞhS⃗i · S⃗ji (8)

in both the original basis and after applying the local spin
rotation discussed above [13]. The resulting phase dia-
grams for Γ > 0 and Γ < 0 are presented in Fig. 3, with
the structure factor for each phase plotted using the colors
from Fig. 2(a) and then overlayed. Contours indicating

FIG. 2 (color online). (a) Combined Luttinger-Tisza and single-
Q analysis. Solid colors correspond to exact classical ground
states from Luttinger-Tisza while the region indicated by the
white dashed line is the single-Q results. [(b)—(f)] Ground-state
spin configurations in each phase. (g) Magnitude of the ordering
wave vector Q⃗ in the IS phase.
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ŷ

x̂
â
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Figure 3. Phase diagram of the classical HK±� model for T ! 0, with J = A sin ✓ cos', K = A sin ✓ sin', and � = A cos ✓  0 [32] on the (a)
hyperhoneycomb lattice [52] and (b) honeycomb lattice. Hatched regions in (a) denote genuine 3D phases with ordering wavevectors outside
the ac plane. The white dashed line indicates the regions in which the Luttinger-Tisza approach fails to satisfy the local length constraint and
a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).

ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.
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These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
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Figure S4. Top panels: Magnon spectrum along high-symmetry points in the zigzag phase of the HK model for ' = 0.62⇡ (in the conventions
of Fig. 2 of the main paper) and h = 0 on the (a) hyperhoneycomb and (b) honeycomb lattices. The position of the high-symmetry points in the
{a⇤, b⇤, c⇤} basis are: � = (0, 0, 0), E = (� 1

3 , 0, 0), Y0 = (� 1
2 , 0,

1
2 ), Y = (0,� 1

2 , 0), T = (0,� 1
2 ,�

1
2 ). Note that the spectrum along the “quasi-2D”

path � ! E ! Y0 ! � is exactly equal to the honeycomb-lattice case. Bottom panels: Same as top panels, but in the field-polarized phase
for h/(AS ) = 2.62 with field applied in the [111] direction, i.e., slightly above the critical field. To demonstrate the equivalence with (c), a
rectangular four-site magnetic unit cell has been chosen in (d) as well. Within this band backfolding, the corner of the hexagonal Brillouin zone
K = (� 2

3 , 0, 0) is equivalent to E in the rectangular Brillouin zone, and the centers of the edges of the hexagonal Brillouin zone My = (� 1
2 , 0,

1
2 )

and Mz = (0, 0,�1) are equivalent to Y0 and � in the rectangular Brillouin zone.

modes are gapped.

The 3D–2D mapping of the magnon spectra can be un-
derstood as follows: Given the equivalence of the lattice
structures (and interactions) after projection on the ac plane,
the Fourier-transformed interactions appearing in the magnon
Hamiltonian are equivalent after projection as well, i.e., they
are equal for quasi-2D momenta. It is these (bare) interac-
tions that determine the magnon spectra at leading order in
1/S , hence the 3D–2D mapping is generically valid.

The equivalence breaks down at higher orders in 1/S be-
cause quantum corrections arising from magnon-magnon in-
teractions involve momentum integrals running over the full
Brillouin zone in either 3D or 2D and hence are di↵erent in
both cases. The same applies to quantum corrections to ther-
modynamic quantities, as shown below.

B. Quantum corrections to magnetization

The spin-wave results can be used to determine zero-
temperature quantum corrections to local expectation values.
We employ this to calculate the magnetization in the high-
field phase of the HK model. Here, the magnetization points
in field direction and is saturated in the classical limit. Using
the Holstein-Primako↵ representation, the magnetization M
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Figure S5. Magnetization in the field-polarized phase for ' = 0.62⇡
of the HK model as a function of the magnetic field applied in [111]
direction, obtained from linear spin-wave theory for S = 1/2, com-
paring the hyperhoneycomb (solid) and honeycomb (dashed) lattices.

along the field direction including quantum corrections is

M = S �
1
N

X

q

D
a
†

qaq + b
†

qbq + c
†

qcq + d
†

qdq
E

(S2)

where aq, bq, cq, and dq are the magnon operators on the four
sublattices, and N is the number of sites. In next-to-leading
order in 1/S , this can be expressed in terms of the Bogoliubov
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Figure 1. (a) Hyperhoneycomb lattice with magnetic skew-zigzag
state and (b) honeycomb lattice with zigzag state; both are equiv-
alent as explained in the text. (c) Hyperhoneycomb lattice viewed
from the crystallographic b̂ direction, illustrating its projection onto
an elongated honeycomb lattice. Colored balls indicate spin direc-
tions. (d) Brillouin zones of the hyperhoneycomb lattice (black) and
the elongated honeycomb lattice (red dashed). 3D states with or-
dering wavevectors in the ac plane can be transformed into equiva-
lent 2D states on the honeycomb lattice. The quarters of the front
hexagon (such as the green quadrangle) can be shifted with recipro-
cal lattice vectors to the ac plane and form, together with the ac-plane
cut of the first Brillouin zone, a rectangle (black dashed). The latter
becomes the 2D Brillouin zone of the elongated honeycomb lattice if
a four-site unit cell is chosen. All high-symmetry points shown are
quasi-2D.

honeycomb lattice. It is thus possible to construct states (e.g.,
skew-zigzag states) that do not break the translation symmetry
on the hyperhoneycomb lattice, although their 2D projections
break the honeycomb translation symmetry.

Further insight is gained in reciprocal space. All high-
symmetry points displayed in Fig. 1(d) have a vanishing com-
ponent along the direction of the reciprocal lattice vector b⇤
(up to reciprocal-lattice translations). States with ordering
wavevectors at these high-symmetry points thus exhibit no
modulation along the b axis in real space and are quasi-2D:
Their projection onto the ac plane yields states on the hon-
eycomb lattice with the exact same classical energy. This ap-
plies to all ordered phases in the nearest-neighbor Heisenberg-
Kitaev (HK) model in zero field. Upon the inclusion of other
symmetry-allowed interactions, as well as in a magnetic field,
Kitaev systems also stabilize multi-Q and incommensurate
states. We will show that even such more exotic states, in-
cluding the counterrotating spiral states that are realized in
the di↵erent Li2IrO3 polytypes, are quasi-2D. Moreover, the
3D–2D mapping discussed here for the hyperhoneycomb lat-
tice can be extended to the full harmonic honeycomb series,
for details see the supplemental material (SM) [28].

Heisenberg-Kitaev model in a magnetic field. To illustrate
the power of the advertised mapping, we consider the spin-S

HK Hamiltonian [11, 13] in a uniform magnetic field h,

HHK = J

X

hi ji

Si · S j + K

X

hi ji�

S
�
i
S
�
j
� h ·

X

i

Si, (1)

where � 2 {x, y, z} labels the three di↵erent types of bonds on
the lattice. The couplings are conventionally parameterized
as J = A cos' and K = 2A sin', where A > 0 is an overall
energy scale [32]. The 2D model on the honeycomb lattice
has been studied intensely, see Refs. 3, 33–35 for reviews. For
non-zero field, the classical phase diagram (i.e., for S ! 1)
of this and related models has been determined [25, 36–38],
and the S = 1/2 case has also been studied [39–48]. The 3D
model on the hyperhoneycomb lattice has been considered in
Refs. 26 and 49.

Here we have determined the phase diagram of the classical
HK model in a magnetic field using a combination of high-
field spin-wave theory and classical energy minimization. On
the hyperhoneycomb lattice, the number of possible geome-
tries of the magnetic unit cell drastically increases with its
size. For reasons of numerical feasibility and consistency, we
have restricted the numerical energy minimization in both the
2D and 3D cases to states with up to 12 sites in the magnetic
unit cell, but have included all possible unit-cell geometries;
for details see the SM [28]. Our findings on the honeycomb
lattice are consistent with the previous analysis [25, 50].

The result, comparing the hyperhoneycomb and honey-
comb cases for a field along the [111] / (x̂ + ŷ + ẑ)/

p
3

direction, is displayed in Fig. 2. The various phases are char-
acterized in the SM [28]. Remarkably, both phase diagrams
agree quantitatively, with the exception of the 3D spiral phase,
which appears only in the 3D case of panel (a). Inspecting the
individual phases, we see that all phases except the 3D spi-
ral have ordering wavevectors located in the ac plane, such
that 3D–2D mapping applies, whereas the 3D spiral phase has
Q = 2

3 Y, evading the mapping. The latter is hence a gen-
uine 3D phase, with a 12-site magnetic unit cell, and we have
illustrated its spin configuration in Fig. 2(c).

We have also determined the phase diagram of the hyper-
honeycomb model in a field along the [001] / ẑ direction, for
which all in-field ordered states are simply canted versions
of the zero-field orders, without any field-induced intermedi-
ate phases, in complete quantitative equivalence with the 2D
honeycomb-lattice result [25].

We note that early work on the hyperhoneycomb-HK model
in a magnetic field [49] missed the nontrivial field-induced
phases found here. We have explicitly checked that our novel
intermediate phases have lower energies than the canted skew-
zigzag and skew-stripy states suggested in Ref. 49.
� and other interactions. For actual Kitaev materials, it

has been shown that, in addition to nearest-neighbor Kitaev
and Heisenberg interactions, also symmetric o↵-diagonal in-
teractions, commonly dubbed � interactions, are important
[12, 37, 51–55]. To model �-Li2IrO3, we hence consider the

"q(hyperhoneycomb) = "q(honeycomb) for all q 2 ac plane
<latexit sha1_base64="BeoZo07S8GugqmUehkLu3ufcvCI="></latexit>
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Néel

AF star

AF
vortex

polarized

skew
zigzag

vortex

skew
stripy

FM
star

3D spiral Néel
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K = 2A sin' [32], and the radial direction representing the field strength h, with h/(AS ) = 1, 2, 3, 4, 5 from outer to inner gray circles, on the
(a) hyperhoneycomb lattice and (b) honeycomb lattice. The latter agrees with the previous analysis [25, 36], with the exception of small regions
for which the true ground state has incommensurate ordering wavevectors. Thick (thin) black lines denote first-order (second-order) phase
transitions. Except for the 3D spiral phase, for which a representative spin configuration is shown in (c), all phases of the hyperhoneycomb
lattice have a 2D analogue with exactly the same ground-state energy. (d) Order parameters in Néel and zigzag phases from linear spin-wave
theory for S = 1/2 and zero field, comparing the hyperhoneycomb (solid) and honeycomb (dashed) lattices.

Hamiltonian

HHK� =
X

hi ji�

h
JSi · S j + KS

�
i
S
�
j
± �
⇣
S
↵
i
S
�
j
+ S

�
i
S
↵
j

⌘i
, (2)

where ↵ and � label the two remaining directions on a � bond.
On the hyperhoneycomb lattice, there are two inequivalent
types of pairwise parallel x (y) bonds, denoted as x and x

0

(y and y
0), respectively, while all z bonds are equivalent; see

Fig. 1(a). We take the upper (lower) sign in front of the �
interaction on x, y, and z (x

0 and y
0) bonds; this choice can

be justified microscopically [52]. Applying the 3D–2D map-
ping to this model, which we dub HK±� model, we see that
it corresponds to an unusual 2D model. Compared to the
Heisenberg-Kitaev-� (HK�) model typically considered for
2D Kitaev materials, this has a supermodulation in the � inter-
action. Importantly, in the presence of sizable � interactions,
incommensurate states appear [12, 52].

Despite these complications, the concept of the 3D–2D
mapping continues to apply. We illustrate this in Fig. 3, where
we show the classical phase diagrams of the HK±� model at
zero field for the hyperhoneycomb and honeycomb lattices.
These have been obtained via a combination of a Luttinger-
Tisza analysis and a single-Q ansatz (as the finite-cluster min-
imization does not capture incommensurate states); see the
SM for details [28]. Our result on the hyperhoneycomb lat-
tice agrees with the previous work [52], except for a small re-
gion around the AFabc phase, for which the true ground state
may be a multi-Q state that is beyond our ansatz. Again, the
3D and 2D phase diagrams agree quantitatively, with the ex-
ception of the SPb± and AFabc phases, which appear only in
panel (a) and are thus genuinely 3D. This result is particu-

larly striking for the counterrotating spiral SPa± phases, for
which the ground state is incommensurate, but with an order-
ing wavevector Q k a⇤, i.e., within the ac plane; cf. Fig. 3(c,d).
This phase includes the ground state realized in �-Li2IrO3
[17, 52–55], such that 3D–2D mapping directly applies to this
material.

For completeness, we note that the 3D–2D mapping can
be extended to interactions beyond nearest neighbors. For
instance, second-neighbor interactions on the hyperhoney-
comb lattice are mapped to a combination of second- and
fourth-neighbor interactions on the honeycomb lattice, third-
neighbor interactions map to third- and sixth-neighbor inter-
actions; for details see the SM [28].

Beyond the classical limit. While the advertised qualita-

tive 3D–2D mapping of ordered states is very general, their
quantitative energetic equivalence only applies to the classi-
cal limit, S ! 1. We have therefore studied quantum e↵ects
in a systematic 1/S expansion using spin-wave theory. A first
remarkable insight is that the leading-order magnon spectra
also follow the 3D–2D mapping, i.e., the magnon energies in
both cases are identical for 3D wavevectors belonging to the
ac plane; this is demonstrated explicitly in the SM [28].

In Fig. 2(d), we display the order parameters (i.e., stag-
gered magnetizations) evaluated for S = 1/2 in the Néel and
zigzag phases of the HK model at zero field, comparing the
hyperhoneycomb and honeycomb lattices. In the hyperhon-
eycomb case, the quantum corrections to the classical value
Mstagg = 1/2 are smaller, but the overall shape of the order pa-
rameter as function of ' = arg(2J + iK) is similar to those of
the honeycomb lattice. In particular, in linear spin-wave the-
ory, the critical values of ' at which the order parameters van-

’ = arg (2J + iK)
<latexit sha1_base64="J7gQL3c0YmwM/WqS0RmKLUcEdjo=">AAACV3icbVBdaxNBFJ3dao3rRxP7IvgyGMSKEnajoC+Foi+iLxVMW8iGcHf2bjJ0ZnaZuVsNy/6E/hpf9Yf01+gkXcG2Hhg4nPsx556sUtJRHF8E4dat29t3eneje/cfPNzpDx4dubK2AieiVKU9ycChkgYnJEnhSWURdKbwODv9sK4fn6F1sjRfaVXhTMPCyEIKIC/N+8/TM7DVUvJ9nhJ+pwbsIn3V7o0/8ZedIlv++cW8P4xH8Qb8Jkk6MmQdDueD4HGal6LWaEgocG6axBXN/H6SQmEbpbXDCsQpLHDqqQGNbtZsLmr5M6/kvCitf4b4Rv13ogHt3EpnvlMDLd312lr8X21aU/Fu1khT1YRGXH5U1IpTydfx8FxaFKRWnoCw0nvlYgkWBPkQoyi1aPCbKLUGkzdpAVqqVY4F1IraJnXFX37FkAOzcbS+xbWRzzK5ntxNcjQeJa9H4y9vhgfvu1R77Al7yvZYwt6yA/aRHbIJE+yc/WA/2a/gIvgdboe9y9Yw6GZ22RWEgz/J/bWD</latexit>

… for S = 1/2 Heisenberg-Kitaev model
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Figure 3. Phase diagram of the classical HK±� model for T ! 0, with J = A sin ✓ cos', K = A sin ✓ sin', and � = A cos ✓  0 [32] on the (a)
hyperhoneycomb lattice [52] and (b) honeycomb lattice. Hatched regions in (a) denote genuine 3D phases with ordering wavevectors outside
the ac plane. The white dashed line indicates the regions in which the Luttinger-Tisza approach fails to satisfy the local length constraint and
a single-Q ansatz has been employed instead; see SM [28]. The 3D–2D equivalence holds also for the incommensurate spiral phase SPa� ,
relevant for �-Li2IrO3, for which a representative spin configuration on the hyperhoneycomb lattice is plotted in (c), together with its projection
onto the honeycomb lattice in (d).

ish, indicating the transition to the Kitaev spin liquid phase,
roughly agree. This suggests that the Kitaev spin liquid on the
hyperhoneycomb lattice [56] covers a parameter range that
is only slightly smaller than those of its honeycomb-lattice
counterpart. In the SM [28], we also show the quantum cor-
rections to the uniform magnetization in the asymptotic high-
field phase.

These results illustrate that the di↵erent phase space ren-
ders quantum fluctuations stronger in 2D compared to 3D. As
a result, phase boundaries will shift and spoil the exact 3D–2D
equivalence for S < 1. This also means that classical phases
that are destroyed by quantum fluctuations in 2D possibly sur-
vive in the 3D case.

Summary. In this paper, we have established an exact cor-
respondence between magnetically ordered spin states on the
3D harmonic honeycomb lattices and the 2D planar honey-
comb lattice. This correspondence is quantitative in the clas-
sical limit and applies to large classes of ordered states. The
condition is that the respective 3D ordering wavevector(s)
lie(s) in the ac plane (up to reciprocal-lattice translations),
which pertains to all high-symmetry points in the Brillouin
zone. We have demonstrated this 3D–2D mapping for the
hyperhoneycomb-lattice Heisenberg-Kitaev model in a mag-
netic field, where we found exact agreement with the 2D case,
with the exception of one intermediate phase which is of gen-
uine 3D character.

The hyperhoneycomb material �-Li2IrO3 orders in an in-
commensurate spiral ground state at low temperatures [17,
18]. For this state, our 3D–2D mapping also applies. On
the classical level, the physics of the incommensurate spiral
state can thus be fully understood within a suitable 2D model.
We have demonstrated this explicitly within a HK±� model;

it should be emphasized that the quasi-2D nature of the exper-
imentally observed state is independent of the choice of mi-
croscopic model. Our result establishes the equivalence of the
experimentally observed spiral states in ↵-, �-, and �-Li2IrO3:
Under the 3D–2D mapping, these states can be adiabatically
transformed into each other. �-Li2IrO3 exhibits a nontrivial
behavior in a finite magnetic field [23, 24, 54]. The 3D–2D
equivalence suggests that similarly interesting in-field e↵ects
may occur also in ↵- and �-Li2IrO3 [57, 58]. This represents
an excellent direction for future theoretical and experimental
work. Together, our work paves the way to a unified under-
standing of the magnetism in 3D and 2D Kitaev materials and
opens novel perspectives for dimensional diversification.
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