Mainz, Germany: 13 Nov. 2019

Novel Electronic and Magnetic Phases in Correlated Spin-Orbit Coupled Oxides

Importance of the quantification of Coulomb interaction in 5d oxides

Bongjae Kim

Dept. Physics, Kunsan National Univ.

Collaborators

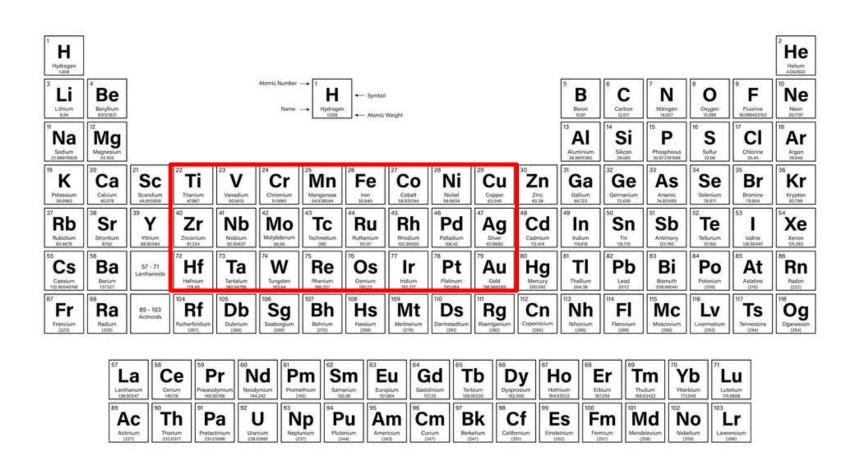
Cesare Franchini

Peitao Liu

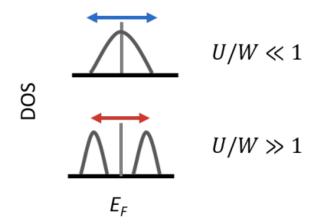
Jan M. Tomczak

Alessandro Toschi

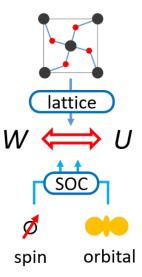
Daniel Springer



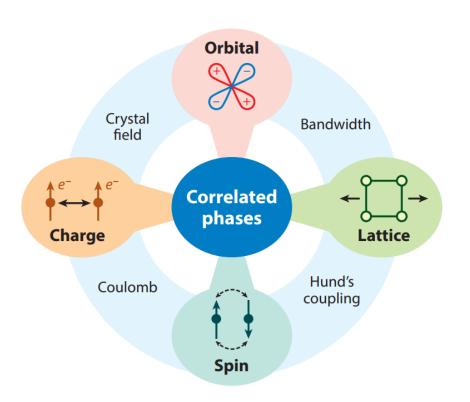
Sergii Khmelevskyi


Abstract

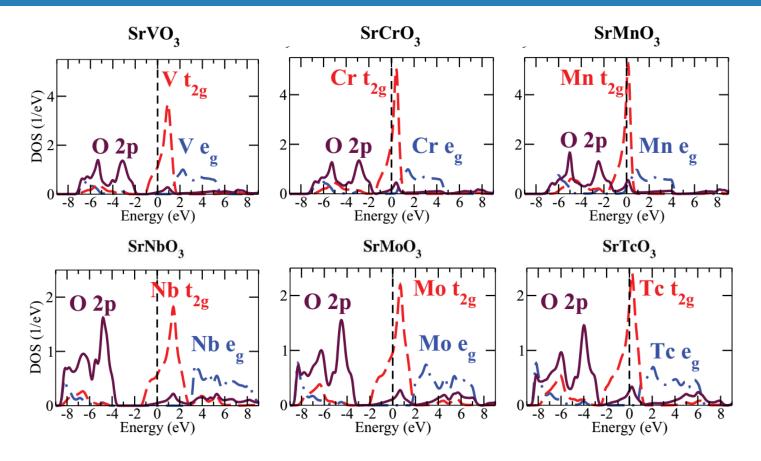
- Introduction & Motivation
- iridates
- osmates
- Summary


Transition metal oxides

Transition metal oxides



Competition between *U* and *W*.

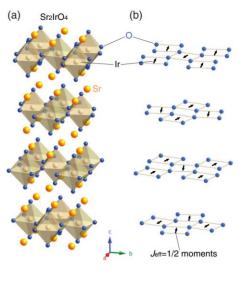

Many degrees of freedoms.

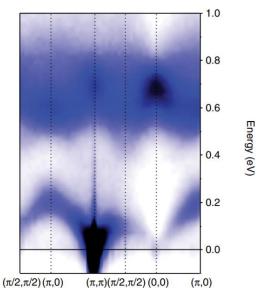
Transition metal oxides

- High- T_C superconductors
- Colossal magnetoresistance (CMR)
- Unconventional magnetism
- (Multi)ferroicity
- Charge/spin/orbital order

Ngai et al., Annu. Rev. Mater. Res. 44 1 (2014)

Vaugier et al., PRB 86 165105 (12)


- 3d oxides
 - Narrow bands
 - Strong correlation governs the physics
 - Role of SOC is minimal


	3d oxides	5d oxides
	Cuprates, Manganites,	Iridates, Osmates,
U	5-10 eV	1-2 eV
W	a few eV	a few eV
SOC	minimal	~0.5 eV

In 5d oxides..

- energy scales of associated physical parameters are similar.
- ✓ small tuning of specific parameter can change the essential physics.
- ✓ recent experimental findings show physics in small energy scales.
- ✓ correct quantification of parameters are important.

Sr2IrO4: cuprate analogue

Momentum q

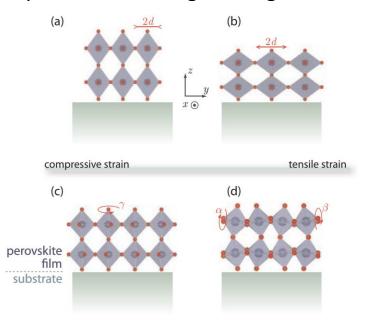
$$J_{ij} = \frac{t_{ij}t_{ji}}{U}$$

✓ Heisenberg interaction scale of 60-100 meV

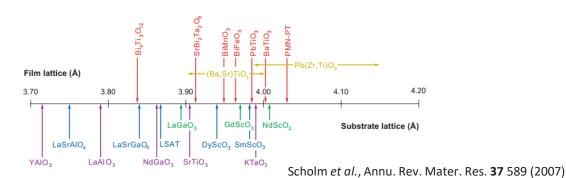
Resolution of RIXS energy scale:

2000: 1500 meV

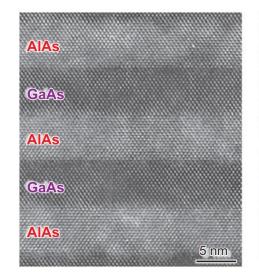
2010: 140 meV


2016: 8 meV

- ✓ Small scale of physical parameters < eV are at play
 : U, t, J, SOC, .. etc
- Correct quantification of parameters are important.

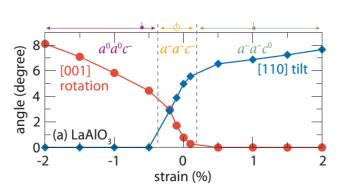

J. Kim et al., PRL 108 177003 (12)

Material tuning

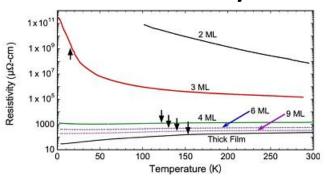

Epitaxial strain engineering

Rondinelli & Spaldin, Adv. Mater. 23 3363 (2011)

Heterostructuring



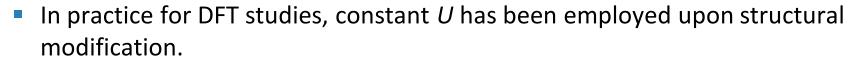
Material tuning


Strain tensile

Symmetry

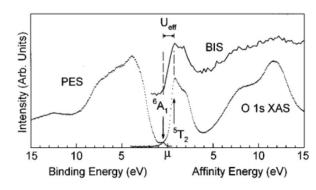
Rondinelli et al., Adv. Mater. (2011)

Dimensionality


 Tuning of bandwidth, hopping, crystal field splitting, symmetry, etc

Xia et al., PRB(R) 79 040407 (2009)

Motivation


"what about U?"

- In DFT-based studies, strong correlation is treated with adding Hubbardtype parameter U
 - DFT+U
 - DFT+DMFT
- The size of U is decided to fit experimental results
 - gap size
 - moment size
 - PES/IPES

strain, dimensional changes, etc.

"Is **U** parameter varies upon structural modification?"

Methods

cRPA (constrained random phase approximation)

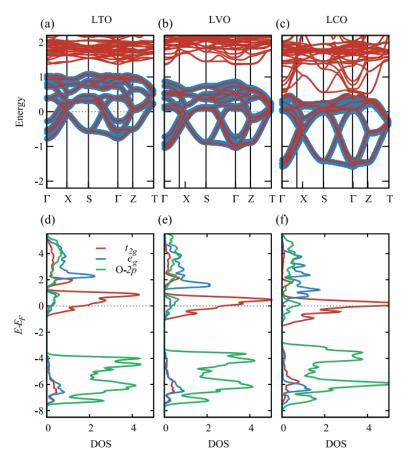
• Exclude all the screening channels within the target correlated subspace (*d* orbitals for TMOs) from the total polarizability:

$$P^r = P - P^c$$

• Partially screened Coulomb interaction can be obtained by solving following Bethe-Salpeter equation: $\mathbf{U}^{-1} = [\mathbf{U}^{bare}]^{-1} - P^r$

, where the correlated subspace is constructed by means of MLWF.

Interaction parameters are calculated from


$$\mathbf{U}_{ijkl} = \lim_{\omega \to 0} \iint d^3r d^3r' w_i^*(\mathbf{r}) w_k^*(\mathbf{r}') \mathbf{U}(\mathbf{r}, \mathbf{r}', \omega) w_j(\mathbf{r}) w_l(\mathbf{r}'),$$

- U and J are obtained by averaging \mathbf{U}_{ijij} and $\mathbf{U}_{ijji}(i \neq j)$ matrix elements.
- We employed both t2g/t2g and t2g/t2g-p models.

U-strain

3d oxides

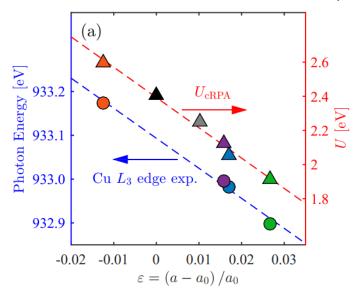
BK et al., PRB 98 075130 (2018)

- Typical transition metal oxide perovskites chosen with varying occupancies:
 - LaTiO₃ (LTO, d^1), LaVO₃ (LVO, d^2) and LaCrO₃ (LCO, d^3)
 - t_{2g} - e_g levels are well-separated
 - d-p hybridization changes upon occupation

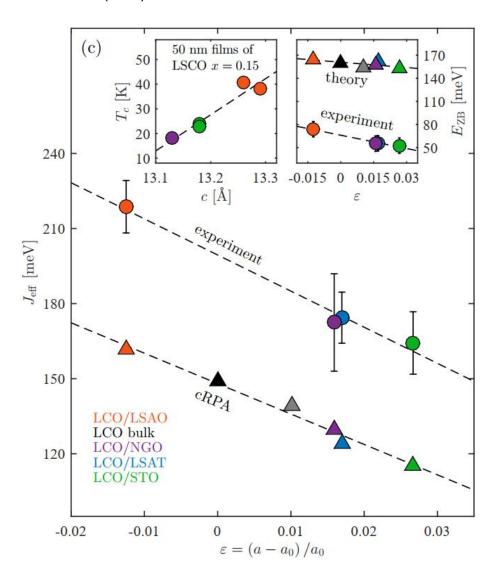
- Increase of *U*bare
 - not from tilting but from occupation
- U does not follow trend of U^{bare}
- Strongly enhanced screening upon occupancy
- Competition between localization and screening

U-strain

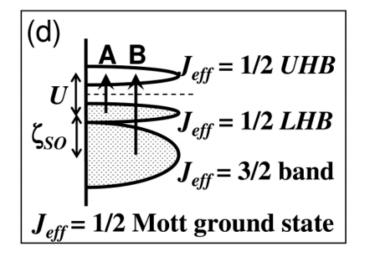
BK et al., PRB 98 075130 (2018)



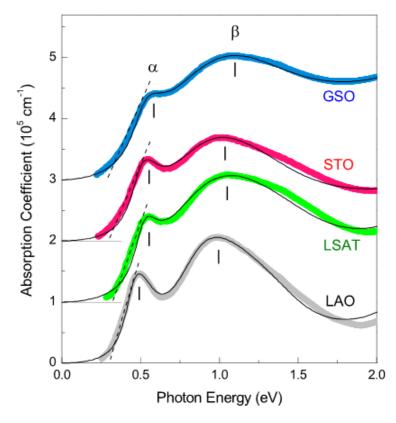
- Different strain dependence upon system.
 - LTO: *U* increase upon tensile strain
 - LCO: U decrease upon tensile strain
- Physics from localization, hybridization, and screening.
 - Wannier localization: effective in LTO
 - screening: more effective for LCO
 - Enhanced d-p overlap for LCO


U-strain

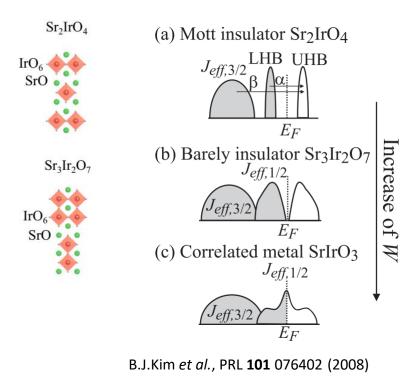
La2CuO4

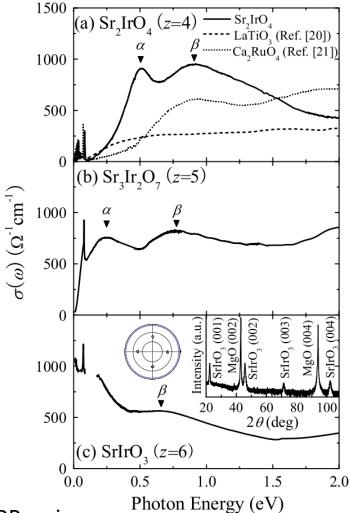

Ivashko et al., Nature Comm. 10 786 (2019)

- Clear indication of change of U upon epitaxial strain.
- Clue to find the optimal condition for highest T_c.
 - enhancing Coulomb interaction & magnetic exchange interactions

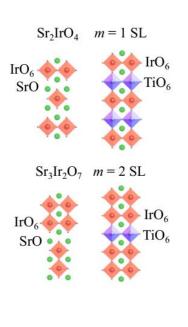


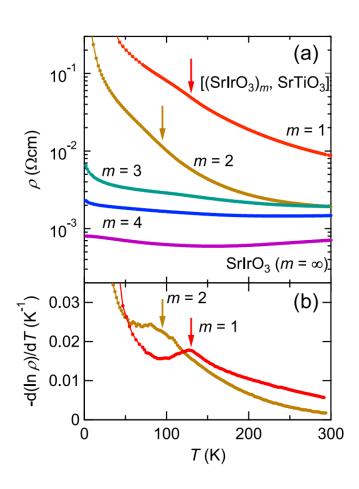
Sr2IrO4


B.J.Kim et al., PRL 101 076402 (2008)


• Shift of α -peak: suggestive of U variations.

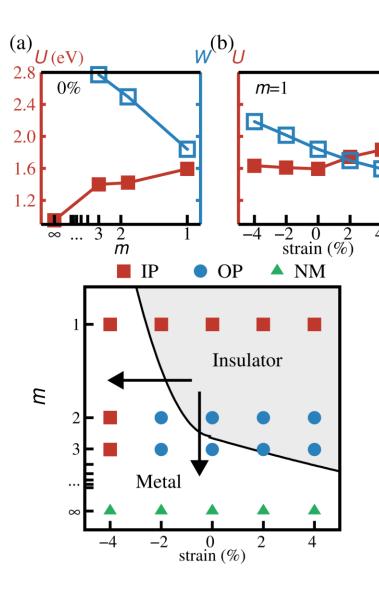
Nichols et al., APL 102 141908 (2013)


Ruddlesden-Popper series



- Dimensional insulator-to-metal transition among RP series.
- Previously interpreted as increase of W upon dimensionality.
- Effective increase of U can be identified from optics.

(SrIrO3)m/(SrTiO3)


Matsuno et al., PRL 114 247209 (2015)

- Systematic study of dimensional effect using superlattice.
- Insulator-metal transition as well as magnetic transition observed.

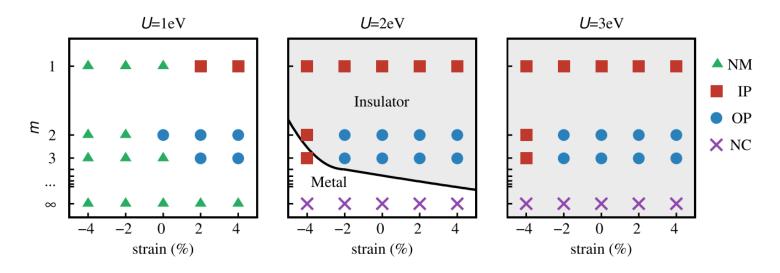
(SrIrO3)m/(SrTiO3)

BK et al., PRB **95** 115111 (2017)

- Dimensional change of U & W can be quantified.
- Strain-dependence is not pronounced.

Dimensionality-strain phase diagram

W(eV)


2.0

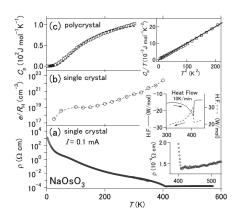
1.2

- DFT+SOC+U with calculated U value.
- Correct electronic and magnetic phase obtained.
- Reproduces experimental findings.

(SrIrO3)m/(SrTiO3)

BK et al., PRB **95** 115111 (2017)

- Employing the same U value for different structures results in wrong phase diagram.
- One need to take account of the varying U!


NaOsO3 and LiOsO3

PHYSICAL REVIEW B 80, 161104(R) (2009)

Continuous metal-insulator transition of the antiferromagnetic perovskite NaOsO₃

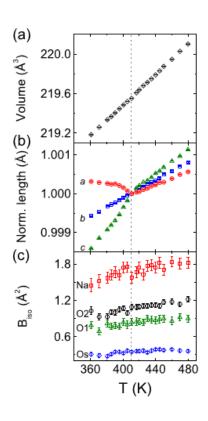
Y. G. Shi, ^{1,2} Y. F. Guo, ^{1,2} S. Yu, ³ M. Arai, ⁴ A. A. Belik, ^{1,2} A. Sato, ⁵ K. Yamaura, ^{2,3,*} E. Takayama-Muromachi, ^{1,2,3} H. F. Tian, ⁶ H. X. Yang, ⁶ J. Q. Li, ⁶ T. Varga, ⁷ J. F. Mitchell, ⁷ and S. Okamoto⁸

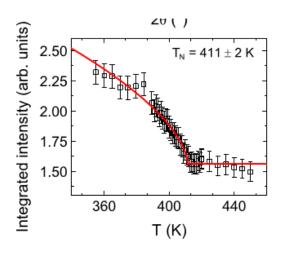
Continuous MIT

- Cooling and warming curve follows the same trace.
- Continuous change in carrier density

Ground state: G-type antiferromagnetic insulator

NaOsO3 and LiOsO3

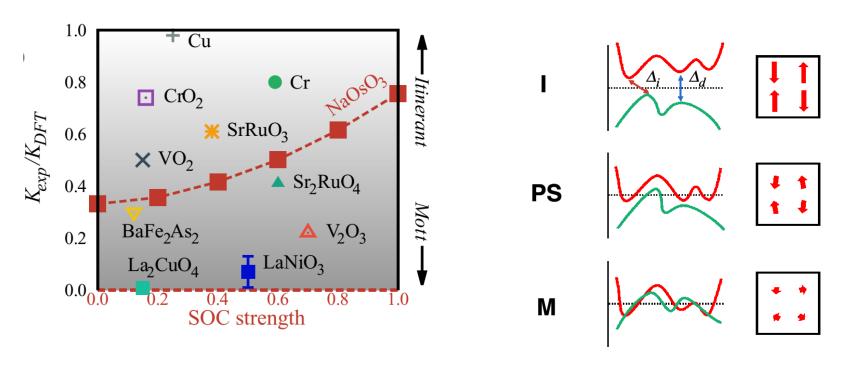

PRL 108, 257209 (2012)


PHYSICAL REVIEW LETTERS

week ending 22 JUNE 2012

Magnetically Driven Metal-Insulator Transition in NaOsO₃

S. Calder, ^{1,*} V. O. Garlea, ¹ D. F. McMorrow, ² M. D. Lumsden, ¹ M. B. Stone, ¹ J. C. Lang, ³ J.-W. Kim, ³ J. A. Schlueter, ⁴ Y. G. Shi, ^{5,6} K. Yamaura, ⁶ Y. S. Sun, ⁷ Y. Tsujimoto, ⁷ and A. D. Christianson ¹



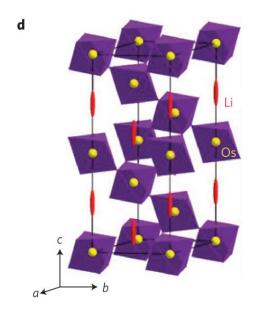
- limited structural effect.
- $T_{MIT} = T_N .$
- magnetism-driven.

NaOsO3 and LiOsO3

BK et al., PRB **94** 241113R (2016)

- SOC-induced renormalization of *U*.
- T-dep. spin-fluctuation drives the MIT of the system.

NaOsO3 and LiOsO3


LETTERS

PUBLISHED ONLINE: 22 SEPTEMBER 2013 | DOI: 10.1038/NMAT3754

nature materials

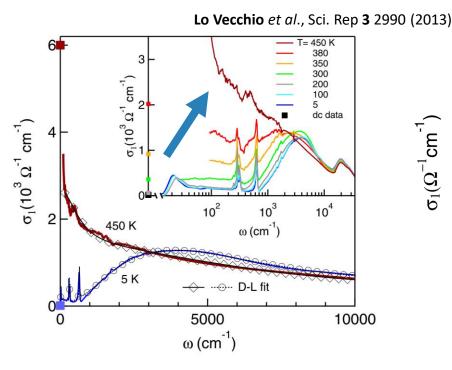
A ferroelectric-like structural transition in a metal

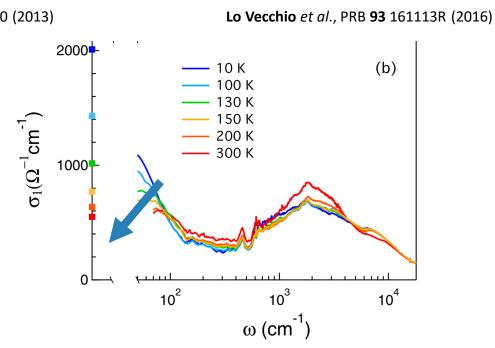
Youguo Shi^{1,2†}, Yanfeng Guo^{1,3†}, Xia Wang¹, Andrew J. Princep³, Dmitry Khalyavin⁴, Pascal Manuel⁴, Yuichi Michiue⁵, Akira Sato⁶, Kenji Tsuda⁷, Shan Yu¹, Masao Arai⁸, Yuichi Shirako⁹, Masaki Akaogi⁹, Nanlin Wang², Kazunari Yamaura^{1*} and Andrew T. Boothroyd^{3*}

- First example of polar metal
- R-3c to R3c transition

Ground state: paramagnetic metal

NaOsO3 and LiOsO3


■ Low-*T*


	NaOsO3	LiOsO3
Symmetry	Pnma	R3c
magnetism	G-AFM	paramagnetic
electronic	insulator	metal

Similar electronic structure expected but very different ground state.

NaOsO3 and LiOsO3

High-T: optical conductivity

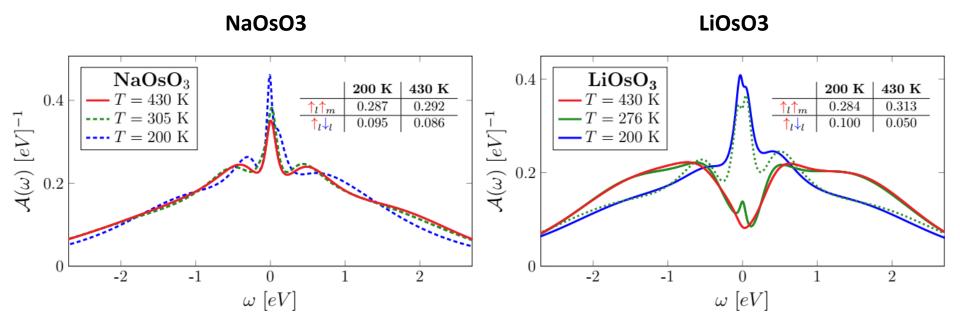
NaOsO3

- Increase of Drude part
- Metallic behavior as T increases

LiOsO3

- Decrease of Drude part
- Insulating behavior as T decreases

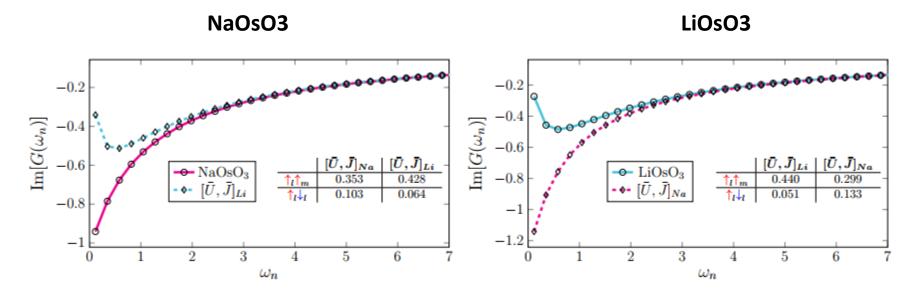
NaOsO3 and LiOsO3

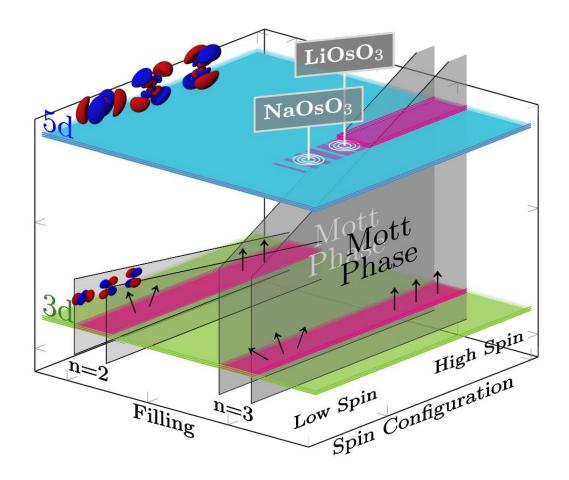

DFT+DMFT

- Wannier-projected t2g orbitals.
- *w2dynamics* implementation.
- CTQMC

Physical parameters

	NaOsO3	LiOsO3
U	2.25 eV	2.35 eV
J	0.24 eV	0.25 eV
W	3.9 eV	3.5 eV
intra t2g splitting	150 meV	250 meV
SOC	0.3 eV	0.3 eV


On-site spectral function


Springer, BK, et al., arXiv:1910.05151

- Constructed from analytic continuation of on-site Green's function.
- Overall T-dep. behavior well-captured.
- Disappearance of metallic coherence for LiOsO3 as T increase.
- Increase of interorbital spin alignment & decrease of intraorbital double occupancy.

Local Green's function

- At high-T, metallic and insulating properties of NaOsO3 and LiOsO3 are well-described.
- Hund-Mott nature of insulating phase in LiOsO3.
 - Enhanced interorbital spin alignment: large local moment.
 - Suppression of intraorbital occupation.
- Interchange of Coulomb parameters, U & J, produces perfect mirroring of Green's function.
- Small details in the interaction parameters are responsible for the stark difference in two systems.

- Two systems are located at the proximity to the n=3 Hund-Mott transition.
- In 5d systems, better description of related physical parameters are important.

Summary

- U is not a fixed parameter strongly dependent on the electronic structure and structural details.
- When employing DFT+manybody approaches (+U, +DMFT, etc), better quantification of Coulomb parameters are important – especially for 5d oxides.
- Implications for the TMO-based materials design.

BK, et. al, PRB **94** 241113 (2016) **BK**, et. al ,PRB **95** 115111 (2017) **BK**, et. al, PRB **98** 075130 (2018) Springer **BK**, et. al, arXiv: 1910 0515

Springer, **BK**, et. al, arXiv: 1910.05151 Liu, He, **BK**, et. al, to be submitted

