

Electronic, magnetic, and optical properties of relativistic Ruddlesden-Popper iridates

Peitao Liu

Faculty of Physics, Computational Materials Physics, University of Vienna, Vienna A-1090, Austria

Nov. 13th, 2019

Der Wissenschaftsfonds.

Outline:

Motivation

Electronic properties

- Combined effect of SOC and U
- Doping induced MIT

Magnetic properties

- Origin of different magnetic orderings in Sr₂IrO₄ and Sr₃Ir₂O₇
- Optical properties

Summary

	3 <i>d</i> (TMOs)	5 <i>d</i> (TMOs)
d orbital	Localized	Spatially extended
Band width <i>W</i>	Small	Large
Hubbard U	Large (5~7 eV)	Small (1~3 eV)

Conventional Hubbard model : U/W >> 1 Insulator U/W <= 1 Metal

B. J. Kim et al., PRL 101, 076402 (2008)

	3 <i>d</i> (TMOs)	5 <i>d</i> (TMOs)
<i>d</i> orbital	Localized	Spatially extended
Band width W	Small	Large
Hubbard <i>U</i>	Large (5~7 eV)	Small (1~3 eV)
SOC strength	Weak (~0.01-0.1 eV)	Strong (~0.1-1 eV)

Conventional Hubbard model : U/W >> 1 Insulator U/W <= 1 Metal

B. J. Kim et al., PRL 101, 076402 (2008)

> A novel spin-orbital $J_{eff}=1/2$ Mott state in Sr_2IrO_4

B. J. Kim *et al.*, PRL 101, 076402 (2008) G. Jackeli et al, PRL 102, 017205 (2009)

- Possible superconductivity?
 - Similar crystal structure

Similar electronic configuration

La₂CuO₄ [Cu²⁺(3d⁹), S=1/2] Sr₂IrO₄ [Ir⁴⁺(5d⁵), J_{eff}=1/2]

Theoretically possible by electron doping PRL 106, 136402 (2011) PRL 110, 027002 (2013) Experimentally not observed yet Science 345,187(2014) PRL 115, 176402 (2015)

Nat. Phys. 12, 37 (2016)

Possible superconductivity?

Fermi arcs (electron doped Sr₂IrO₄)

Pseudogap (La doped Sr₂IrO₄)

Y. K. Kim et al., Science. 345, 187(2014)

Y. K. Kim et al., Nat. Phys. 12, 37(2016)

Insulator-to-metal transition (IMT)

> IMT is observed in La doped Sr_2IrO_4

A. de la Torre et al., PRL 115, 176402(2015)

Insulator-to-metal transition (IMT)

> IMT is observed in Rh doped Sr₂IrO₄

Y. Cao, et. al, arXiv:1406.4978 (2014)

Unusual magnetic properties

Out-of-plane collinear anti-ferromagnetic order, with negligible in-plane moment

B. Kim, P. Liu, et al, PRB 95, 115111 (2017)

D. Meyers, et al, Scientific Reports 9, 4263 (2019)

Dimensionality-controlled insulator-metal transition

S. J. Moon et al., PRL 101, 226402 (2008).

J. Fujioka *et al.,* PRB 95, 121102 (2017).

S. Y. Kim *et al.*, PRB 94, 245113 (2016). 16

Outline:

Motivation

Electronic properties

- Combined effect of SOC and U
- Doping induced MIT

Magnetic properties

- Origin of different magnetic orderings in Sr₂IrO₄ and Sr₃Ir₂O₇
- Optical properties

Summary

Crystal structure

Effects of U and SOC

Metal-insulator transition phase diagram

AFM-I - anti-ferromagnetic insulator AFM-M - anti-ferromagnetic metal M-M - magnetic metal M-I - magnetic insulator NM-M - non-magnetic metal

- The stronger the SOC, the smaller is the critical interaction U_c required for a metalinsulator transition.
- > Critical U_c to a metal-insulator transition : $Sr_2IrO_4 < Sr_3Ir_2O_7 < SrIrO_3$

Band structure evolution

Calculating U based on cRPA

Aryasetiawan et al., PRB70, 195104 (2004)

Х

Μ

Г

R

Г

$$U_{mn}(\omega) = \langle \varphi_{m0}(\mathbf{r})\varphi_{m0}(\mathbf{r})|W_r(\mathbf{r},\mathbf{r}';\omega)|\varphi_{n0}(\mathbf{r}')\varphi_{n0}(\mathbf{r}')\rangle$$

Picture from F. Aryasetiawan

Calculating U based on cRPA

> All the screening channels within t_{2g} subspace are removed > U is calculated in the t_{2g} Wannier basis

	U (eV)	J (eV)
Sr ₂ IrO ₄	1.82	0.22
Sr ₃ Ir ₂ O ₇	1.67	0.22
SrIrO ₃	1.37	0.22

P. Liu *et al.,* PRM 2, 075003 (2018)

Band structure

Supercell model

Undoped Sr₂IrO₄

Band unfolding

$$P_{\vec{K}m}(\vec{k}) = \sum_{n} |\langle \Psi_{\vec{K}m} | \psi_{\vec{k}n} \rangle|^2$$

P. Liu *et al.*, PRB 94, 195145 (2016) 24

- Insulator to metal transition is found by La doping
- As La doping concentration increases, the upper Hubbard bands gradually shift down, leaving a electronic pocket first at (π/2, π/2) and enhanced spectral function at X
 P. Liu *et al.*, PRB 94, 195145 (2016)

➢ Rh doping

- Insulator to metal transition is found by Rh doping
- As Rh doping concentration increases, the lower Hubbard bands gradually shift up, leaving a hole pocket first at X and then at G

P. Liu *et al.,* PRB 94, 195145 (2016)

Rh doping

Higher Rh doping leads to the magnetic phase transitions from AFM-I to AFM-II

➢ Rh doping

Electron charge density difference

P. Liu et al., PRB 94, 195145 (2016)

- The effect of Rh doping is local, with negligible effect on the 2NN Ir.
- Hole transfer from Rh to NN Ir, leading to Rh^{3.3+}

S. Chikara *et al.*, PRB 95, 060407(R) (2017)

Outline:

- Motivation
- Electronic properties
 - Combined effect of SOC and U
 - Doping induced MIT
- Magnetic properties
 - Origin of different magnetic orderings in Sr₂IrO₄ and Sr₃Ir₂O₇
- Optical properties
- Summary

Origin of the canted magnetism in Sr₂IrO₄

$$\mathcal{H} = \sum_{i < j} J \vec{S}_i \cdot \vec{S}_j + \sum_{i < j} J_z S_i^z S_j^z + \sum_{i < j} \vec{D} \cdot [\vec{S}_i \times \vec{S}_j]$$
(1)

 $\Delta E = 16JS^2\cos(2\theta) + 8K\cos(4\theta) + 16D_zS^2\sin(2\theta)$ (2)

Constraining magnetic moments approach

$$E = E_0 + \sum_i \lambda [\mathbf{M}_i - \mathbf{M}_i^0 (\mathbf{M}_i^0 \cdot \mathbf{M}_i)]^2$$
⁽³⁾

 E_0 is the usual DFT energy without any constraint \mathbf{M}_i^0 is a unit vector along the desired direction of the magnetic moment at site *i*

 \mathbf{M}_i is the integrated magnetic moment inside the Wigner-Seitz cell around atom i

 λ controls the penalty energy contribution which becomes vanishingly small by increasing λ

Origin of the canted magnetism in Sr₂IrO₄

$\Delta E = 16JS^2 \cos(2\theta) + 8K \cos(4\theta) + 16D_z S^2 \sin(2\theta)$

-			
	JS^2	K	$D_z S^2$
This work	-0.32	-0.10	0.25
Literature	-(0.33~0.56) ^a		0.38 ^b
^a J. Kim, PF	RL (2012). B. H.	Kim, PRL	(2012). V. M.
Katukuri, P	RB (2012). G. Jacke	eli, PRL (200	99).

^b B. H. Kim, PRL (2012).

Origin of the unusual magnetism in Sr₂IrO₄

Effects of tetragonal distortion and octahedral rotation

- > As *c/a* increases to a threshold, spin-flop transition occurs
- \blacktriangleright As α decreases to a critical value, canted FM moment disappears

Origin of the unusual magnetism in Sr₂IrO₄

Ab initio magnetic phase diagram in the c/a- α space

Origin of the unusual magnetism in Sr₂IrO₄

J. W. Kim *et al.*, PRL 109, 037204 (2012)

Possible reason for c-collinear AFM in Sr₃Ir₂O₇

- > The c-collinear AFM phase is favorable as the interlayer's distance <4.35 A.
- As the distance increases further, the ab-canted AFM becomes energetically stable phase.

Possible reason for c-collinear AFM in Sr₃lr₂O₇

- > Without epitaxial strain, $J_2 > J_1$, leading to out-of-plane magnetic order.
- Tensile strain favors out-of-plane magnetic order, whereas compressive strain induces spin-flip transition from out-of-plane spin to in-plane spin.

B. Kim, P. Liu and C. Franchini, 95, 024406 (2017)

Outline:

- Motivation
- Electronic properties
 - Combined effect of SOC and U
 - Doping induced MIT
- Magnetic properties
 - Origin of different magnetic orderings in Sr₂IrO₄ and Sr₃Ir₂O₇
- Optical properties
- Summary

$$\chi^{-1}(\omega) = P_{\rm IQP}^{-1}(\omega) - K$$

FIG. 3. Feynman diagrams representing the Bethe-Salpeter equation for χ .

G. Onida et al., Rev. Mod. Phys. 74, 601 (2002)

➤ Full BSE

$$\chi^{-1}(\omega) = P_{\rm IQP}^{-1}(\omega) - K$$

$$\begin{pmatrix} A & B \\ B & A \end{pmatrix} \begin{pmatrix} X_{\lambda} \\ Y_{\lambda} \end{pmatrix} = \Omega_{\lambda} \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix} \begin{pmatrix} X_{\lambda} \\ Y_{\lambda} \end{pmatrix}$$

$$\begin{pmatrix} A & B \\ B & A \end{pmatrix} = \begin{pmatrix} K^{(\mathbf{r},\mathbf{r})} + (\varepsilon_a - \varepsilon_i)\delta^a_b \delta^i_j & K^{(\mathbf{r},\mathbf{a})} \\ K^{(\mathbf{r},\mathbf{a})} & K^{(\mathbf{r},\mathbf{r})} + (\varepsilon_a - \varepsilon_i)\delta^a_b \delta^i_j \end{pmatrix}$$

Tamm-Dancoff approximation (TDA)

$$\begin{pmatrix} A & R \\ R & A \end{pmatrix} \begin{pmatrix} X_{\lambda} \\ Y_{\lambda} \end{pmatrix} = \Omega_{\lambda} \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix} \begin{pmatrix} X_{\lambda} \\ Y_{\lambda} \end{pmatrix}$$

Tamm-Dancoff approximation (TDA)

Frequency-dependent macroscopic dielectric function

$$\varepsilon(\omega) = 1 - \lim_{\mathbf{q} \to 0} V(\mathbf{q}) \sum_{\Lambda} \left(\frac{1}{\omega - \Omega_{\Lambda} + i\eta} - \frac{1}{\omega + \Omega_{\Lambda} - i\eta} \right) \\ \times \left\{ \sum_{\mathbf{k}} w_{\mathbf{k}} \sum_{v,c} \langle \psi_{c\mathbf{k}} | e^{i\mathbf{q} \cdot \mathbf{r}} | \psi_{v\mathbf{k}} \rangle X_{cv\mathbf{k}}^{\Lambda} \right\} \times \{\text{c.c.}\}, \quad (4)$$

Oscillator strength of optical transition

$$S_{\Lambda} = \mathbf{Tr} \left[\left\{ \sum_{\mathbf{k}} w_{\mathbf{k}} \sum_{v,c} \langle \psi_{c\mathbf{k}} | e^{i\mathbf{q}\cdot\mathbf{r}} | \psi_{v\mathbf{k}} \rangle X_{cv\mathbf{k}}^{\Lambda} \right\} \times \{\text{c.c.}\} \right].$$
(5)

P. Liu *et al.*, PRM 2, 075003 (2018) 40

41

GW+ SOC

43

P. Liu *et al.*, PRM 2, 075003 (2018) 44

Summary

- The MIT phase diagrams w.r.t. SOC and U provide clear evidence for the relativistic Mott-Hubbard character in Sr₂IrO₄ and Sr₃Ir₂O₇.
- IMT is observed in La- and Rh- doped Sr2IrO4, which can be regarded as an effective electron and hole doping, respectively.
- The origin of the canted magnetic state in Sr₂IrO₄ arises from the competition between the isotropic exchange and DM interactions. The out-of-plane magnetic ordering of Sr₃Ir₂O₇ originates from strong interlayer exchange coupling.
- The GW+BSE optical spectra of Sr₂IrO₄ and Sr₃Ir₂O₇ agree well with the experimental results, but for SrIrO₃ the agreement is not good, though the double-peak feature is reproduced, indicating that going beyond GW is necessary to accurately describe the band renormalization for correlated metals.

Acknowledgment

Cesare Franchini

Bongjae Kim

Sergii Khmelevskyi

Georg Kresse

Univ. of Vienna

Kunsan National Univ.

Univ. of Vienna

Univ. of Vienna

Der Wissenschaftsfonds.

Thank you all for your attention!