Ab initio theory of multipolar order and of superconductivity in selected compounds

Peter M. Oppeneer

Dept. of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden

Contents

<u>*Aim:*</u> Understand complex low-energy ordering phenomena using modern electronic structure calculations

- Ab initio theory for complex multipolar ordering in NpO₂, UO₂, AmO₂
- Ab initio DFT-based calculations of (un)conventional superconductivity MgB₂ (FeSe/SrTiO₃)

Collaboration & Thanks To

Multipolar order

Michi-To Suzuki (Tohoku U., Japan) Nicola Magnani (EU Science, JRC)

Ab initio superconductivity

Alex Aperis

Fabian Schrodi

Pablo Maldonado

Roberto Caciuffo, Gerry Lander

Review:

First-principles theory of magnetic multipoles in condensed matter systems. M.-T. Suzuki, H. Ikeda, and P.M. Oppeneer, J. Phys. Soc. Jpn. **87** (2018) 041008

Uppsala Superconductivity (UppSC) code

Schrodi, Aperis & Oppeneer, PRB 99, 184508 (2019) Bekaert et al, PRL 123, 077001 (2019) Schrodi, Aperis & Oppeneer, PRB 98, 094509 (2018) Aperis and Oppeneer, PRB 97, 060501(R) (2018)

A major puzzle - Two "hidden" exotic phase transitions

URu₂Si₂ (heavy fermion SC)

NpO₂ (insulating oxide)

After many years of research: no dipole magnetic ordering below T₀

Is the physical mechanism of the hidden orders the same ? Many multipolar orders proposed (octupole, hexadecapole, triakontadipole?)

Observed multipolar order in solid-state systems

Actinides: UO₂, NpO₂ and UPd₃

Lanthanides: CeB_6 , $CePd_3S_4$, $PrPb_3$, $PrMg_3$, $DyPd_3S_4$, HoB_2C_2 , DyB_2C_2 , $PrRu_4P_{12}$, $PrOs_4Sb_{12}$, $SmRu_4P_{12}$, ...

Reviews:

Santini et al, Rev. Mod. Phys. 81, 807 (2009) Kusunose, J. Phys. Soc. Jpn. 77, 064710 (2008) Kuramoto, Kusunose & Kiss, JPSJ 78, 072001 (2009) Suzuki, Ikeda & Oppeneer, JPSJ 87, 041008 (2018)

A puzzle: Multipolar ordering in NpO₂

Westrum et al, J. Chem. Phys. **21**, 419 (1953) Ross and Lam, J. Appl. Phys. **38**, 1451 (1967) Neutron exp.: No magnetic dipole order

Caciuffo et al, Solid State Commun. **64**, 149 (1987) Muon spin relaxation: *magnetic signal*

Kopmann et al, J. Alloys Compd. **271-273**, 463 (1998)

RXS: 3*q* electric quadrupole Paixao et al, PRL **89** (2002) 187202

Santini et al, PRL **97** (2006) 207203 suggests 3*q*-triakontadipole (2⁵) to explain observed properties

Support from INS Magnani et al, PRB **78** (2008)104425

Actinide dioxides

- but all are insulators with fluorite structure !

But: DFT & DFT+U make all AcO₂ 5f-compounds antiferromagnetic!

Electric multipoles:

Magnetic multipoles:

$$\mathcal{Q}_{\ell m} \equiv \sqrt{\frac{4\pi}{2\ell+1}} \int d\mathbf{r} (r^{\ell} Y_{\ell m}^{*}(\theta,\phi)) \rho_{e}(\mathbf{r})$$
$$\mathcal{M}_{\ell m} = \sqrt{\frac{4\pi}{2\ell+1}} \int d\mathbf{r} \, \nabla (r^{\ell} Y_{\ell m}^{*}(\theta,\phi)) \cdot \mathbf{m}(\mathbf{r})$$

Rank: I =0 – monopole, I =1 – dipole, I =2 – quadrupole, I =3 – octupole, I =4 –hexadecapole, I =5 – triakontadipole

Time reversal symmetry: electric MP – even , magnetic MP - odd Spatial inversion symmetry: Nonzero even rank electric multipoles & nonzero odd rank magnetic multipoles

In solids: classification according to IREP of the point group

Active multipole moments in $O_h \Gamma_8$ -quartet

• Kiss and Fazekas (2003) [Phys. Rev. B 68 (2003) 174425]

The Γ_5 octupoles $T_{111}^{\beta} = T_{x\beta} + T_{y\beta} + T_{z\beta}$ are the best candidates for octupolar order parameters

• Santini et al (2006) [Phys. Rev. Lett. 97 (2006) 207203]

 Γ_5 quadrupoles and Γ_5 triakontadipoles in the ordered state are suggested

Exp. status

0

- LSDA +U (FLL), with noncollinear atomic magnetization
- FPLAPW (Kansai code, SOC) (isotropic) U = 4 5 eV, J = 0 0.5 eVanisotropic part: $F_4 = 41/297F_2$, $F_6 = 175/11583F_2$, $J = (286F_2 + 195F_4 + 250F_6)/6435$
- Choice of initial density matrix (e.g. NpO₂): Tr[n]=3, 5f³occupancy of states in D_{3d} irred. representation

multipole moments:

$$\langle O^{\tau\ell} \rangle = \sum_{kb\gamma\gamma'} \langle kb | \tau\ell\gamma \rangle O^{\tau\ell}_{\gamma\gamma'} \langle \tau\ell\gamma' | kb \rangle = \sum_{\gamma\gamma'} O^{\tau\ell}_{\gamma\gamma'} n^{\tau\ell}_{\gamma'\gamma} \qquad |\tau l\gamma\rangle \text{ local basis in MT spheres}$$

Operator expressions

Methodology

- LSDA +U (FLL), with noncollinear atomic magnetization
- FPLAPW (Kansai code) (isotropic) U = 4 5 eV, J = 0 0.5 eVanisotropic part: $F_4 = 41/297F_2$, $F_6 = 175/11583F_2$, $J = (286F_2 + 195F_4 + 250F_6)/6435$
- Choice of initial density matrix:

E.g., Density matrix expressed by D_{3d} irreducible representation

$$h_{\text{LDA}+U} = h_{\text{LDA}} + \sum_{\tau} \sum_{\gamma\gamma'} |\tau \ell \gamma \rangle v_{\gamma\gamma'}^{\tau \ell} \langle \tau \ell \gamma'|$$

with local on-site 5f-Coulomb correction (FLL)

 $(F_0 = U, J = aF_2 + bF_4 + cF_6)$ $F_4 = 41/297F_2, F_6 = 175/11583F_2, J = (286F_2 + 195F_4 + 250F_6)/6435$

Use appropriate symmetry: Not fluorite FCC (O_h) but D_{3d} local symmetry for Np 5f³ ions, with time-rev.symm. breaking, for 4-units NpO₂

Converges to Non-Col. Multipol. ordered state with *lower* total energy

Charge densities on Np ions

RXS: 3*q* electric quadrupole Paixao et al, PRL **89** (2002) 187202

$3\boldsymbol{q}$ structure with (111) axis

Paramagnetic vs. 3*q*-multipolar ordered state

Which of the 3*q*-multipole order parameters ?

Complex (tot.) magnetic distribution on Np in NpO₂

5f charge density isosurface with magnetization as color

UO₂ – antiferromagnetic insulator

Transverse 3q antiferromagnet with quadrupole moment (computed without lattice distortion)

Suzuki, Magnani & Oppeneer, PRB **88,** 195146 (2013) Magnani, Suzuki & Oppeneer, Comp. Rend. Phys. **15** (2015)

Spin & charge distributions at the Ac side

Nonmagnetic AcO₂ compounds

(but smaller gaps for larger J)

Ab initio theory of 'unconventional' superconductivity

- → No definite *identification* of unconvent. pairing mechanism
- → Not much *ab initio* theory of SC (e.g., phononic SC in MgB₂ *)
- → Multiband, anisotropic Eliashberg theory with ab initio DFT input (Uppsala Superconductivity code)
- \rightarrow Search for unconventional superconductivity in MgB₂
 - Magnetic-field induced odd-frequency pairing
 - > MgB₂ is good test case for calculations (anisotropic, two-band SC)

UppSC:

- full bandwidth
- even- and odd-frequency pairing
- phonon and SF mediated SC
- Adiabatic & non-adiabatic SC

*Choi et al, Nature 418 (2002)

Fully anisotropic Eliashberg equations

Eliashberg equations with Zeeman field and even & odd-freq. gap

We solve the above self-consistently with *ab initio* input!

 $\lambda(\mathbf{k},\mathbf{k}';n,n') = \int_0^\infty d\Omega \alpha^2 F(\mathbf{k},\mathbf{k}';\Omega) \frac{2\Omega}{(\omega_n - \omega_{n'})^2 + \Omega^2} \quad \omega_n = (2n+1)\pi k_B T, \text{ Matsubara frequency}$

MgB₂: Calculated two anisotropic gaps in zero field

Aperis, Maldonado & Oppeneer, PRB 92, 054516 (2015)

Odd-frequency SC

Not possible in BCS $\Delta \operatorname{not} \Delta(\omega)$

Cooper pair wave function is **odd**

 $\Psi_{\alpha\beta}(\mathbf{k},\omega) \sim g(\mathbf{k}) \otimes \chi(\alpha\beta) \otimes f(\omega)$

Momentum x Spin x Frequency

What if.. $f(-\omega) = -f(\omega)$

Berezinskii (1974): Spin-triplet s-wave

Balatsky & Abrahams (1992): Spin-singlet p-wave

Predicted odd-frequency gap edge at 40 T, 4.2 K

Introduce the gap edges

 $\Delta^{e(o)}_{\uparrow(\downarrow)}(\mathbf{k}) = \Delta_{e(o)}(\mathbf{k}, \omega_{\mathbf{k},\uparrow(\downarrow)})$

field-induced odd-freq. SC gap edge

Small gap, "by-product" only present due to even-freq. SC

Aperis, Maldonado & Oppeneer, PRB 92, 054516 (2015)

Magnetic-field induced odd-frequency SC in MgB₂

Prediction of field induced, Two-band odd-freq. spin-triplet, s-wave SC

Calculated H-T phase diagram Ab initio estimation of the Pauli limiting field $H_p=119 T$

Calculated Tc = 39.8 K

Aperis, Maldonado & Oppeneer, PRB **92**, 054516 (2015)

- \succ LSDA+U theory predicts 3*q*-multipolar order in NpO₂ & AmO₂
- Largest contribution from triakontadipole term in NpO₂
- Superexchange coupled MMP induces insulator state
- \succ Dipolar 3*q* AFM order with quadrupole predicted for UO₂
- \rightarrow Nonmagnetic insulator state obtained for PuO₂ and CmO₂
- \geq Prediction of field-induced multiband odd-freq. SC in MgB₂
- Roadmap for ab initio materials' specific description of SC

THANK YOU !!