# More Surprises in f-electron Magnetism

## Alexander Shick Institute of Physics ASCR, Prague, CZ





EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání



Projekt Fyzika pevných látek pro 21. století CZ.02.1.01/0.0/0.0/16\_019/0000760 je spolufinancován Evropskou unií. In 1959, Richard Feynman proposed a \$1K prize for the storage of inforation on a page of a book at the 1/25000 scale in such a way that it could be read by an electron microscope. The ultimate fulfilment of this request, has been realized by storing his own words at the 2016 APS conference [F. Kalff et al..Nature Nanotechnology 11, 926 (2016)].

#### > Quest for ultra-high-density storage media the magnetic storage density above 100 Tbit/in<sup>2</sup>

R. Baltic *et al.*, Superlattice of Single Atom Magnetis on Graphene, Nano Letters 16 (2016)



#### Localized nature of 4f-electrons



#### DFT works poorly for the 4f- and 5f-materials *f*-electron challenge

Based upon "C. () indicates the mass number of the longest-lived isotope

Beyond DFT: combining DFT and Hubbard-I/ED approximation for the Anderson Impurity model

> O. Eriksson group, Elemental rare earth: PRB94 (2016);

- A. Shick et al., PRB80(2009).
  - Interaction between

multiplets

4f-atomic surface bands

#### **Electronic/magnetic character of** Dy@lr(111) & Dy@GR/lr(111)

A. B. Shick et. al., Scientific Reports 7, 2751 (2017);

A. B. Shick and A. I. Lichtenstein, JMMM 454, 61 (2018).

A. B. Shick and A.Y. Denisov, JMMM 475, 211 (2019).

## DFT + U + Hubbard-I / "Exact Diagonalization"



$$[n] = -\pi^{-1} \operatorname{Im} \int^{E_F} dz \operatorname{Tr} \left[ G(z) \right]$$

#### **AIM "Exact Diagonalization":**

- Spin-orbit coupling + Crystal Field + Exchange splitting
- Full Coulomb vertex
   DFT + U:
- Self-consistency over charge density
   Full-Potential Linearized Augmented Plane
   Wave (FLAPW) basis



$$\hat{H}_{CEF} = \sum_{kq} A_k^q \langle r^k \rangle \Theta_k(J) \hat{O}_k^q + (g-1) J_z \Delta_{EX}$$

$$\textcircled{T Stevens Operators}$$

Stevens operators. 
$$X \equiv J(J+1)$$
 and  $J_{\pm} \equiv J_x \pm i J_y$ .  
 $O_2^0 = 3J_z^2 - X$   
 $O_4^0 = 35J_z^4 - (30X - 25)J_z^2 + 3X^2 - 6X$ 

| CF                          | This | Dela | ange         | Tils       | Zhao | Givord     | Richter | Novak |
|-----------------------------|------|------|--------------|------------|------|------------|---------|-------|
| (Kelvin)                    | Work | ↑    | $\downarrow$ | Experiment |      | CEF-Theory |         |       |
| $A_2^0 \langle r^2 \rangle$ | -190 | -313 | -262         | -326       | -330 | -200       | -755    | -160  |
| $A_4^0 \langle r^4 \rangle$ | -135 | -40  | -55          | _          | -45  | 0          | -37     | -33   |
| $A_6^0 \langle r^6 \rangle$ | -152 | 35   | 25           | _          | 0    | 50         | 11      | 40    |
| $A_6^6\langle r^6\rangle$   | -763 | -731 | -593         | _          | 0    | 0          | 290     | 168   |

 $E_{MA}(\theta,\phi) = K_1 \sin^2 \theta + K_2 \sin^4 \theta + K_3 \sin^6 \theta + K_4 \sin^6 \theta \cos(6\phi)$ 

| MAE, meV                    | $K_1$ | $K_2$            | $K_3$    | $K_4$ | MAE     |
|-----------------------------|-------|------------------|----------|-------|---------|
| This work                   | 18.6  | -7.5             | 0        | 0     | 11.1    |
| $\mathrm{DFT}+\mathrm{SRM}$ | Soder | lind et          | t al., 1 | 2017  | 10.5    |
| DFT+U                       | Landa | a <i>et al</i> . | , 201    | 8     | -9.9    |
| Experiment                  |       |                  |          | 9     | .2,13.1 |



#### **Dy@GR/Ir(111)**



[d





| Z             | a.u.  |
|---------------|-------|
| Dy@Ir         | 4.35  |
| Dy@GR/Ir-HCP  | 4.235 |
| Dy@GR/Ir-ATOP | 4.15  |

**U**=7.0 eV **J**=0.82 eV



XMCD

## Probe spin and orbital moments + multiplet structure

Sum rules

$$\begin{split} L_z \rangle &= \frac{n_h}{I_{M_5} + I_{M_4}} (\Delta I_{M_5} + \Delta I_{M_4}) \\ &\qquad \langle S_z \rangle + 3 \langle T_z \rangle = \\ \frac{n_h}{2(I_{M_5} + I_{M_4})} (\Delta I_{M_5} - \frac{3}{2} \Delta I_{M_4}) \\ &\qquad \vec{T} = \sum_i [\vec{s}_i - 3(\vec{r}_i \cdot \vec{s}_i)/r_i^2] \end{split}$$

- magnetic dipole moment

#### **Comparison with XMCD**

|                        | $\langle M_S \rangle$ | $\langle M_L \rangle$ | $\langle M_S \rangle + \langle M_D \rangle$ | $R_{LS}$ |
|------------------------|-----------------------|-----------------------|---------------------------------------------|----------|
| Dy@Ir(111)             | 4.43                  | 4.92                  | 5.78                                        | 0.85     |
| XMCD Sum Rules Exp.    | -                     | $2.8{\pm}0.2$         | $3.4{\pm}0.2$                               | 0.82     |
| Dy@GR/Ir(111)-HCP      | 3.78                  | 5.81                  | 4.53                                        | 1.28     |
| Dy@GR/Ir(111)-ATOP     | 3.63                  | 5.72                  | 4.52                                        | 1.27     |
| XMCD Sum Rules Exp.    | -                     | $3.9{\pm}0.2$         | $3.0{\pm}0.2$                               | 1.30     |
| Multiplet Calculations | 3.36                  | 5.32                  |                                             |          |

 $\checkmark$  Very good agreement for R<sub>IS</sub> ratio  $M_L / [M_S + M_D]$  $\langle L_z \rangle = \frac{3n_h}{I} (\Delta I_{M_5} + \Delta I_{M_4})$ Sum Rules:  $\left[\langle S_z \rangle + 3 \langle T_z \rangle\right] = \frac{3n_h}{I} (2\Delta I_{M_5} - 3\Delta I_{M_4})$  $I = \int d\omega (\mu_0(\omega) + \mu_+(\omega) + \mu_-(\omega))$ > Assumtion of isotropic absorbtion:  $\mu_0(\omega) = \frac{1}{2}(\mu_+(\omega) + \mu_-(\omega))$ 



Change of Dy valence due to Graphene

$$\hat{H}_{CEF} = \sum_{kq} A_k^q \langle r^k \rangle \Theta_k(J) \hat{O}_k^q + (g-1) J_z \Delta_{EX}$$

|               | $A_2^0 \langle r^2 \rangle$ | $A_4^0 \langle r^4 \rangle$ | $A_6^0 \langle r^6 \rangle$ | $A_6^6 \langle r^6 \rangle$ |
|---------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Dy@Ir         | 4.55                        | 1.51                        | -13.30                      | 37.6                        |
| Dy@GR/Ir-HCP  | -10.89                      | 6.81                        | 2.79                        | -7.53                       |
| Dy@GR/Ir-ATOP | -9.6                        | 6.8                         | 3.2                         | -8.1                        |

### Magnetic Anisotropy Energy

 $E_{MA}(\theta,\phi) = K_1 \sin^2 \theta + K_2 \sin^4 \theta + K_3 \sin^6 \theta + K_4 \sin^6 \theta \cos(6\phi)$ 

| MAE, meV      | $K_1$ | $K_2$  | $K_3$ | $K_4$ | MAE  |
|---------------|-------|--------|-------|-------|------|
| Dy@Ir         | 142.1 | -299.4 | 179.0 | 2.2   | 21.7 |
| Dy@GR/Ir-ATOP | 83.7  | -163.0 | 86.4  | 0.9   | 7.1  |

#### << Magnetic Remanence >>



 $B_2^0 \hat{O}_2^0 + B_4^0 \hat{O}_4^0 + B_6^0 \hat{O}_6^0 + B_6^6 \hat{O}_6^6 + (g-1)J_z \Delta_{ex} + gJ_z B_z$ 

4f 5d lattice  $\Delta_{EX} = J_{df} m_{5d} \Rightarrow 0$   $|J=7.5, J_z=7.5\rangle \Rightarrow |J=7.5, J_z=2.5\rangle |J=8, J_z=8\rangle \Rightarrow |J=8, J_z=7.9\rangle$ 

Strong reduction of  $M_z$ 

No change of M<sub>z</sub>

### Role of Quantum Tunneling



Magnetic stability of Dy@Ir & Dy@Gr/Ir

$$\sum_{kk'} \left[ J_{+} c_{k\downarrow}^{\dagger} c_{k'\uparrow} + J_{-} c_{k\uparrow}^{\dagger} c_{k'\downarrow}^{\alpha'} + J_{z} \left( c_{k\uparrow}^{\dagger} c_{k'\uparrow} - c_{k\downarrow}^{\dagger} c_{k'\downarrow} \right) \right]$$

## Kondo exchange: $\left[J_K N(E_F)\right] = 2 \frac{\Delta(E_F)}{N_f} \left[\frac{1}{(\epsilon_f + U - J)} - \frac{1}{\epsilon_f}\right]$

> Hybridization: 
$$\Delta(\epsilon) = \frac{1}{\pi}\Im \operatorname{Tr}[G_{\mathrm{HIA}}^{-1}(\epsilon + i0)]$$

|          | $\epsilon_{ m f}, eV$ | $\Delta(E_F), eV$ | $J_{\rm K}N(E_{\rm F})$ |
|----------|-----------------------|-------------------|-------------------------|
| Dy@Ir    | -6.16                 | 0.30              | 2.14                    |
| Dy@GR/Ir | -6.15                 | 0.12              | 0.57                    |

$$\begin{bmatrix} \frac{1}{T_1} \end{bmatrix} \sim \left[ (g_J - 1)J \right]^2 [J_K N(E_F)]^2 [k_B T] \\ \begin{bmatrix} \frac{1}{T_1} \end{bmatrix} (\text{Dy@Ir}) / \begin{bmatrix} \frac{1}{T_1} \end{bmatrix} (\text{Dy@GR/Ir}) = 14$$

✓ Increase of the Dy-moment lifetime due to GR



- DFT+U+HIA/ED calculations are in reasonable agreement with experimental XMCD data for orbital M<sub>L</sub>, effective spin M<sub>S</sub>+M<sub>D</sub>, and the ratio R<sub>LS</sub>.
- The role of 5d-4f interorbital exchange polarization is emphasized.
- Change in valence of Dy adatom due to Graphene:

## **Dy<sup>3+</sup>@Ir(111) vs** Dy<sup>2+</sup>@GR/Ir(111)

- Longer lifetime of Dy@GR/Ir than of Dy@Ir
- Acknowledge collaboration with
- J. Kolorenc, FZU ASCR, Prague;
- A. Denisov, Ural Federal University, Yekaterinburg;
- A. Lichtenstein, University of Hamburg

**EXTRA SLIDES** 

Anderson Impurity Model:"Exact Diagonalization"

#### **Anderson Impurity Model parameters**

- ✓ SOC  $\xi$  from DFT  $\xi_l = \int_0^{R^{MT}} \mathrm{d}r \, r \frac{1}{(2Mc)^2} \frac{\mathrm{d}V(r)}{\mathrm{d}r} u_l(r) u_l(r)$
- Crystal Field matrix

$$[H]_{\gamma_1\gamma_2} = \int_{\epsilon_b}^{\epsilon_t} \mathrm{d}\epsilon \,\epsilon[N(\epsilon)]_{\gamma_1\gamma_2} \quad \Longrightarrow \quad \Delta_{\mathrm{CF}}$$

removing the interacting DFT+U potential and SOC

✓ 
$$\Delta_{\text{EX}} = J_{\text{df}} m_{5\text{d}} \sim 5-10 \text{ meV} (J_{\text{df}} = 0.1 \text{ eV}, 5\text{d}-4\text{f exchange})$$

Slater Intergrals F<sub>0</sub>, F<sub>2</sub>, F<sub>4</sub>, F<sub>6</sub>
 [S. Lebegue et al., PRB (2006)]

#### **Charge Self-Consistency**

✓ Self-Energy: 
$$\left[\Sigma(z)\right]_{\gamma_1\gamma_2} = z\delta_{\gamma_1\gamma_2} - \left[\xi(\mathbf{l}\cdot\mathbf{s}) + \Delta_{CF} + \left(G^{\text{AIM}}(z)\right)^{-1}\right]_{\gamma_1\gamma_2}$$

✓ Dyson Equation and Occupation matrix

$$\begin{bmatrix} G(z) \end{bmatrix}_{\gamma_1 \gamma_2}^{-1} = \begin{bmatrix} G_0(z) \end{bmatrix}_{\gamma_1 \gamma_2}^{-1} - \Delta \epsilon \delta_{\gamma_1 \gamma_2} + \begin{bmatrix} \Sigma(z) \end{bmatrix}_{\gamma_1 \gamma_2}$$
$$n_{\gamma_1 \gamma_2} = -\pi^{-1} \operatorname{Im} \int^{E_F} \mathrm{d} z \, [G(z)]_{\gamma_1 \gamma_2}$$

Construct DFT+U potential and solve KS equations

$$\left(-\nabla^2 + V_{LDA}(\mathbf{r}) + V_U + \xi(\mathbf{l}\cdot\mathbf{s})\right)\Phi_i(\mathbf{r}) = e_i\Phi_i(\mathbf{r}) \qquad 
ho(\mathbf{r}) = \sum_i \Phi_i^{\dagger}(\mathbf{r})\Phi_i(\mathbf{r})$$

Non-spherical double counting is removed from DFT part

#### ✓ Calculate DFT+U Total Energy

**Projection to LAPW-basis** 

$$G(z) = \frac{1}{V_{BZ}} \int_{BZ} d\mathbf{k} \sum_{b} \frac{\langle \phi_m | \Phi^b \rangle \langle \Phi^b | \phi'_m \rangle}{z + \mu - \epsilon^b(\mathbf{k})}$$
$$\Phi^b_{\mathbf{k}}(\mathbf{r}) = \sum_{\mathbf{G}} c^b_{\mathbf{k}+\mathbf{G}} \phi_{\mathbf{k}+\mathbf{G}}(\mathbf{r})$$
$$\phi_{\mathbf{k}+\mathbf{G}}(\mathbf{r}) = \sum_{l,m} [a^{lm}_{\mathbf{k}+\mathbf{G}} u_l(r_i) + b^{lm}_{\mathbf{k}+\mathbf{G}} \dot{u}_l(r_i)] Y_{lm}(\hat{r}_i)$$

 $\langle \phi_m | \Phi^b \rangle \langle \Phi^b | \phi_{m'} \rangle = \langle u_l Y_{lm} | \Phi^b \rangle \langle \Phi^b | u_l Y_{lm'} \rangle + \frac{1}{\langle \dot{u} | \dot{u} \rangle} \langle \dot{u}_l Y_{lm} | \Phi^b \rangle \langle \Phi^b | \dot{u}_l Y_{lm'} \rangle$ 

| This work      |         | Sm-f  | $\operatorname{Sm}$ | Co-1(2c) | $\operatorname{Co-2(3g)}$ | Total     |
|----------------|---------|-------|---------------------|----------|---------------------------|-----------|
|                | $\mu_S$ | -3.95 | -4.22               | 1.46     | 1.48                      |           |
|                | $\mu_L$ | +4.20 | +4.22               | 0.10     | 0.09                      |           |
|                | $\mu_T$ | 0.25  | 0                   | 1.56     | 1.57                      | 7.41      |
| Granas et al., |         | Sm-f  | $\operatorname{Sm}$ | Co-1(2c) | $\operatorname{Co-2}(3g)$ | Total     |
| DMFT (2012)    | $\mu_S$ | -     | -3.47               | 1.54     | 1.52                      |           |
|                | $\mu_L$ | -     | +3.26               | 0.22     | 0.18                      |           |
|                | $\mu_T$ | -     | -0.21               | 1.76     | 1.70                      | 8.02      |
| Soderlind et a | I.,     | Sm-f  | $\mathrm{Sm}$       | Co-1(2c) | Co-2(3g)                  | Total     |
| SRM (2018)     | $\mu_S$ | -     | -                   | 1.61     | 1.60                      |           |
|                | $\mu_L$ | -     | -                   | 0.22     | 0.18                      |           |
|                | $\mu_T$ | -     | -0.30               | 1.83     | 1.78                      | 8.27      |
| Partick & Stau | unton,  | Sm-f  | Sm                  | Co-1(2c) | Co-2(3g)                  | Total     |
| SIC (2018)     | $\mu_S$ | _     | -5.63               | -        | -                         |           |
|                | $\mu_L$ | -     | +4.55               | -        | -                         |           |
|                | $\mu_T$ | -     | -1.08               | -        | -                         | 7.13      |
| Exp            | . PND   | _     | 0                   | 1.86     | 1.75                      | 8.97      |
| E              | Exp.    |       |                     |          |                           | 7.3 - 8.7 |