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Ø  In 1959, Richard  Feynman proposed a $1K prize for the storage of infor- 
ation on a page of a book at the 1/25000 scale in such a way that it could be 
read by an electron microscope. The ultimate fulfilment of this request, has 
 been realized by storing his own words at the 2016 APS conference 
 [F. Kalff et al..Nature Nanotechnology 11, 926 (2016)]. 
 

Ø Quest for ultra-high-density storage media  
 the magnetic storage density above 100 Tbit/in2  
R. Baltic et al., Superlattice of Single Atom Magnetis on Graphene, 

Nano Letters 16 (2016) 



u DFT works poorly for the 4f- and 5f-materials 
f-electron challenge  

u Localized nature of 4f-electrons   
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u Electronic/magnetic character of  
Dy@Ir(111) & Dy@GR/Ir(111) 

u Interaction between 

u  Beyond DFT: combining DFT and Hubbard-I/ED 
approximation for  the Anderson Impurity model 

4f-atomic  
multiplets 

surface bands 

Ø A. B. Shick et. al., Scientific Reports 7, 2751 (2017); 

Ø A. B. Shick and A. I. Lichtenstein, JMMM 454, 61 (2018). 

Ø A. B. Shick and A.Y. Denisov, JMMM 475, 211 (2019). 

Ø O. Eriksson group, Elemental rare earth: PRB94 (2016); 
Ø  A. Shick et al., PRB80(2009). 



Anderson Impurity Solver 
 “Exact Diagonalization” 

DFT+U + self-consistency 
     over charge density   

[n]imp = [n]loc 

nf   

    AIM “Exact Diagonalization”: 
v   Spin-orbit coupling + Crystal Field + Exchange splitting 
v   Full Coulomb vertex 
     DFT + U: 
v   Self-consistency over charge density 
                    Full-Potential Linearized Augmented Plane   
                                        Wave (FLAPW) basis 
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⇥
G(z)

⇤



LETTERS

Magneto-elastic lattice collapse in YCo5

H. ROSNER1*, D. KOUDELA2, U. SCHWARZ1, A. HANDSTEIN2, M. HANFLAND3, I. OPAHLE2,
K. KOEPERNIK2, M. D. KUZ’MIN2, K.-H. MÜLLER2, J. A. MYDOSH1† AND M. RICHTER2
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The isomorphic collapse of crystalline lattices under pressure
is a rare and intriguing phenomenon—the most famous
examples being samarium sulphide and cerium metal.

Both lattices are cubic under ambient conditions and collapse
isomorphically under pressure, remaining cubic with ∼15%
volume reduction1–3. In SmS the transition results from a change
of the 4 f chemical valence. The collapse in Ce is connected with
the altering contributions of the 4 f electrons to the chemical
bonding, the details of which are currently much debated4,5. In
contrast, YCo5 is a hexagonal metallic compound with a stable
valence and no 4 f electrons. Here, we present a combination
of high-pressure X-ray diffraction measurements and density
functional electronic-structure calculations to demonstrate an
entirely different type of isomorphic transition under hydrostatic
pressure of 19 GPa. Our results suggest that the lattice collapse
is driven by magnetic interactions and can be characterized as a
first-order Lifshitz transition, where the Fermi surface changes
topologically. These studies support the existence of a bistable
bonding state due to the magneto-elastic interaction.

For centuries, phase transitions in solids have played a key role
in tailoring material properties, for example, in steel technology.
More recently, scientists have been intrigued by isomorphic phase
transitions under pressure, where a dramatic change of the
electronic structure triggers a volume collapse, while the atomic
arrangement in the structure is preserved. Such transitions provide
a unique opportunity to study the fundamentals of chemical
bonding. In general, high pressure is the most appropriate tool
to study the effect of modified atomic distances on physical
and chemical properties. Alternatively, similar modifications can
be achieved by substituting chemically similar elements with
different atomic radii. In contrast to the chemical substitution,
high pressure has the advantage that the chemical bonding can be
modified without changing the composition. Specifically, chemical
substitution introduces disorder and local strain in the atomic
lattice, whereas external pressure largely preserves the lattice
homogeneity. Recent progress in high-pressure technology now
makes it possible to study materials under hydrostatic compression,
even at low temperatures, up to the megabar region—that is

Figure 1 The hexagonal crystal structure of YCo5. Yttrium atoms in the centre of
the hexagons are represented by gold spheres, the two crystallographically
non-equivalent cobalt atoms at the corners and on the prism face centres are
represented by dark-blue and light-blue spheres.

several million times the atmospheric pressure and comparable to
pressures in the earth’s core. In particular, itinerant magnetism
of transition metals is sensitive to pressure. Iron, the prototype
ferromagnetic element and main constituent of the earth’s core,
becomes non-magnetic under a transition pressure of about 65 GPa
(0.65 Mbar)6.

Among all known elements and ordered compounds, cobalt
metal exhibits the most stable magnetic behaviour, indicated by
its magnetic ordering temperature TC of almost 1,400 K, higher
than that of any other element or compound. Even under the
extreme pressure of 120 GPa the magnetism in Co is only partially
suppressed7. If diluted with moderate amounts of non-magnetic
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Table 1.5. Stevens operators. X ≡ J(J + 1) and J± ≡ Jx ± iJy.
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crystallographic (a, b, c)-axes specified in the previous section. How-
ever, it will later be convenient to rotate the z-axis into the magne-
tization direction, and instead orient the crystallographic (a, b, c)-axes
along the (ξ, η, ζ)-Cartesian directions. For an ion with hexagonal point-
symmetry, as in the hcp structure or on the hexagonal sites of the dhcp
structure, the crystal field is specified by 4 parameters:

Hcf =
∑

i

[ ∑

l=2,4,6

B0
l O0

l (Ji) + B6
6O6

6(Ji)
]
. (1.4.6b)

The Hamiltonian (1.4.6) lifts the degeneracy of the ionic |JMJ> states
and, since it is expressed in terms of J operators, whose matrix elements
between these states may be determined by straightforward calculation,
it may readily be diagonalized to yield the crystal-field energies and
eigenfunctions. The Bm

l may then be used as adjustable parameters to
reproduce the available experimental information on these eigenstates.
As an example, we show in Fig. 1.16 the splitting of the nine |4MJ >
states in Pr by the crystal fields acting on the hexagonal sites. This level
scheme was derived from values of the crystal-field parameters adjusted
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Dy@Ir(111) 

3x3x1 supercell  

Dy@GR/Ir(111) 

Chapter 3. Dy atoms on graphene/Ir(111)

A sketch of graphene adsorbed on Ir(111) is shown in Figure 3.1. It shows three different
regions with respect to the positions of the centers of graphene hexagonal rings and iridium
atoms [67]. The region where the center of the ring is placed on top of the iridium atom
is called atop region. This is the weakest bound region of the graphene and, consequently,
graphene is here the furthest away from its supporting substrate. The other two, more bound,
regions are the so called fcc and hcp regions. They correspond to the centers of the hexagonal
rings being on top of the three-fold hollow sites of Ir(111) surface. The difference between
them comes from the atom beneath this hollow site. If the atom below is from the second
layer of the iridium surface, this is the hcp region, and if it originates from the third layer, it is
the fcc region.

hcp atop fcc

C
1st layer Ir(111)
2nd layer Ir(111)
3rd layer Ir(111)

Figure 3.1 – Sketch of graphene on Ir(111) surface. White arcs mark the atop regions, dashed
circles fcc region and dotted circles hcp regions. Adapted from [67].

3.2 STM measurements of Dy on graphene/Ir(111)

3.2.1 Disordered Dy on graphene/Ir(111)

Ensembles of individual Dy atoms on graphene/Ir(111) can be obtained by their deposition
with an e-beam evaporator. Figure 3.2 shows a STM image of one such ensemble after depo-
siting Θ= 0.01 ML of Dy on the substrate kept at Tdep = 10 K. Here, one monolayer (ML) is
defined as one Dy atom per graphene unit cell. In this image Dy atoms appear as a randomly
distributed protrusions on graphene/Ir(111) surface.

3.2.2 Self-assembly of Dy superlattice on graphene/Ir(111)

The scanning tunneling microscopy image in Figure 3.3 shows an ensemble of Dy atoms
on graphene/Ir(111) after deposition of Θ = 0.01 ML Dy at Tdep = 40 K . At this substrate
temperature, surface diffusion of Dy atoms is activated and they can reach the most favorable
adsorption site within the moiré unit cell. This results in a superlattice of single Dy atoms.

The potential landscape ruling the formation of the Dy superlattice consists of three com-
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   “HCP” 



Dy@Ir(111) Dy@Ir(111) 

Z= 4.35 a.u. 

Z a.u. 
Dy@Ir 4.35 

Dy@GR/Ir-HCP 4.235 
Dy@GR/Ir-ATOP 4.15 

Dy@GR/Ir(111) 

   U=7.0 eV J=0.82 eV 



            

 
 

                             Soft X-ray magnetic circular dichroism (XMCD) in core level 
absorption spectra provides us with useful information related to the electronic 
states of the magnetic materials. It is noted that the XMCD not only gives us 
element specific magnetic moments, but also tells us how much an orbital (spin) 
magnetic moment contributes to   their total magnetic moments. The following 
figure shows an example of a sub monolayer Mn grown on Ni (110) subtrate.One 
finds a clear XMCD of Mn and Ni 2p edges, and the polarities of the XMCD 
signals are same for both Mn and Ni 2p edges, meaning that the directions of the 
magnetic moments are parallel between the Mn and the substrate Ni.Thus one 
can surely obtain the element specific information of the magnetic moments by 
conducting core excited XMCD experiments. 
 

                                
 

 XMCD 
 Probe spin and orbital moments + 

multiplet structure  

 Sum rules 

Dipole selection rule 

d, f 

p, d 

- magnetic dipole moment 



 Comparison with XMCD 

ü Very good agreement for RLS ratio ML / [MS+MD] 

Ø Assumtion of isotropic absorbtion: 

Sum Rules: 
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Effective Crystal Field Theory 

Magnetic Anisotropy Energy 



Chapter 4. Dy on Ir(111) and several decoupling substrates

Ir(111) are shown in Figure 4.1(a-c). The XAS spectra of Dy atoms on Ir(111) have a lineshape
characeristic of Dy 4 f 9 occupation [32], containing a multiplet feature with the highest inten-
sity in both XAS and XMCD spectra at 1291.8 eV. The shape and intensity of the XMCD spectra
are independent of the incidence angle of x-rays, indicating a negligible magnetic anisotropy
of this system.
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Figure 4.1 – Experimentally acquired (a) XAS, (b) XMCD and (c) XMLD spectra at Dy M4,5 edges
for Θ= 0.002 ML Dy on Ir(111). The arrows point to the peak at 1291.8 eV. (d) Magnetization
curve acquired by measuring the XMCD signal at 1291.8 eV as a function of the magnetic
field (Tdep = 4 K, T = 2.5 K, φ = 9φ0, with φ0 = 0.003 photons nm−2 s−1; (a,b) B = 6.8 T,
(c) Ḃ = 12 mT s−1).

We acquired the magnetization curves of Dy atoms on Ir(111) by recording the intensity of
their XMCD peak at 1291.8 eV in both normal and grazing incidence, in the range of magnetic
fields between B = 6.8 T and B = −6.8 T. The acquired curves are shown in Figure 4.1(d).
Dy atoms on Ir(111) show a clear lack of magnetic hysteresis, and a perfectly paramagnetic
magnetization curve. This indicates magnetization lifetime shorter than a few seconds at
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3.3. XMCD measurements for Dy atoms on graphene/Ir(111)
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Figure 3.12 – (a) Time evolution of the maximum XMCD intensity at B = 0.01 T of Dy on
graphene/Ir(111) acquired with φ0 (yellow dots), and 5φ0 (blue dots) after saturation of the
sample magnetization at B = 6.8 T. Exponential fits (red and purple solid lines, respectively)
give the magnetic relaxation time τ. (b) Magnetization curves acquired with two combinations
of x-ray flux and acquisition speed values; blue, φ= 5φ0 and Ḃ = 33 mT s−1; green, φ= 9φ0

and Ḃ = 12 mT s−1 (T = 2.5 K, θ = 0◦).
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<<Magnetic Remanence>>   
Dy@Ir Dy@GR/Ir 

4f 5d 
 

lattice 
 

ΔEX= Jdf  m5d       0 

|J=7.5,Jz=7.5>  |J=7.5,Jz=2.5> |J=8,Jz=8> |J=8, Jz=7.9> 

Strong reduction of Mz  No change of Mz  



Role of Quantum Tunneling   

splitting of different Jz eigenvalues  

couples different Jz states  

|Jz=8>     -0.996|Jz=8> +0.076|Jz=2> -0.046|Jz=-4>      
|Jz=0>        0.707|Jz=3> -0.707|Jz=-3> (+0.6 meV) 
|Jz=-8>    -0.996|Jz=-8> +0.076|Jz=-2> -0.046|Jz=4>  

Ø   QT leads to strong reduction of the energy barrier 

Ø GS remains protected against the moment reversal 



Ø  Kondo exchange:    

Ø Hybridization:                         

-6.16 0.30  2.14 
-6.15 0.12 0.57 

Dy@Ir 

Dy@GR/Ir 

JKN(EF)✏f , eV

Magnetic stability of  Dy@Ir & Dy@Gr/Ir  

(Dy@Ir) / (Dy@GR/Ir)  = 14  

ü  Increase of the Dy-moment lifetime due to GR  



 
u  DFT+U+HIA/ED calculations are in reasonable 

agreement with experimental XMCD data for 
orbital ML,effective spin MS+MD,and the ratio RLS. 

u  The role of 5d-4f interorbital exchange 
polarization is emphasized. 

u  Change in valence of Dy adatom due to Graphene: 
     

Dy3+@Ir(111) vs Dy2+@GR/Ir(111) 
 

u  Longer lifetime of Dy@GR/Ir than of Dy@Ir  
ü Acknowledge collaboration with 
J. Kolorenc, FZU ASCR, Prague; 
A. Denisov, Ural Federal University, Yekaterinburg; 
A. Lichtenstein, University of Hamburg 
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Anderson Impurity Model parameters 

removing the interacting DFT+U potential  and SOC 

ü  SOC -      from DFT   ⇠

ü  Crystal Field matrix     

ü  Slater Intergrals F0, F2, F4, F6  
     [S. Lebegue et al., PRB (2006)] 
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ü  ΔEX= Jdf  m5d ~ 5-10 meV (Jdf=0.1 eV,  5d-4f exchange ) 
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Ø Non-spherical double counting is removed from DFT part 
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