Magneto-elasticity in Fragile Magnets

Collin Broholm, Institute for Quantum Matter Johns Hopkins University

I. Introduction:

- \circ Multiferroic Ni₃V₂O₈
- Spin-Peierls transition ZnCr₂O₄
- II. Modulated Kondo screening in CeCoGe₃
 III. Frustration and its relief in V₂O₃

Magneto-striction

Qualitative impacts when there are competing interactions:

- a. Lattice responds to magnetic symmetry breaking
- b. Lattice distortion can enable magnetic order by relieving frustration

Multiferroic kagome staircase Ni₃V₂O₈

INSTITUTE FOR QUANTUM MATTER

Competing Exchange Interactions

Modulated magnetic phases Ferroelectric

Commensurate Canted FM

2.2 K < T < 4 K

Incommensurate Cycloidal

4 K < T < 6.5 K

Incommensurate amplitude modulated

6.5 K < T < 9.2 K

iqm.jhu.edu

INSTITUTE FOR QUANTUM MATTER

Lattice responds to magnetic symmetry breaking

Tri-linear interaction:

$$V = \sum_{nm\gamma} c_{nm\gamma} \sigma_n(\mathbf{q}) \sigma_m(-\mathbf{q}) P_{\gamma}$$

IRREP	1	2_X	\widetilde{m}_{y}	\widetilde{m}_z
Γ_1	1	1	1	1
Γ_2	1	1	-1	-1
Γ_3	1	-1	1	-1
Γ_4	1	-1	-1	1

<u>Amplitude modulated (Γ_4)</u> $V_{HTI} = \sum_{\gamma} c_{44\gamma} |\sigma_4(\mathbf{q})|^2 P_{\gamma} \equiv \mathbf{0}$

<u>Cycloid state $(\Gamma_4 + \Gamma_1)$ </u> $V_{LTI} = c_{14y} (\sigma_1(\mathbf{q})\sigma_4(-\mathbf{q}) + \sigma_4(\mathbf{q})\sigma_1(-\mathbf{q}))P_y$

Relieving frustration

Spin-Peierls transition for AFM spin-1/2 chain

Spin-Peierls-like transition in pyrochlore Antiferromagnets (ZnCr₂O₄)

Kondo lattice CeCoGe₃

Arumugam Thamizhavel, et. al. JPS (2005)

Non-centro-symmetric tetragonal
 Three thermal phase transitions T_{N1}= 21K, T_{N2}= 12K, T_{N3}= 8K
 [001] easy axis
 Strong coupling of magnetism to transport
 Meta-magnetic transitions

Collaborators: CeCoGe₃

Shan Wu, JHU \rightarrow Berkeley

Chris Stock, University of Edinburgh

Cedomir Petrovic, Brookhaven National Laboratory

INSTITUTE FOR QUANTUM MATTER

CeCoGe3: Summary

- Ising-like spin-orbital degree of freedom
- Complex sequence of commensurate squarewave structures that extend to eight unit cells
- Intricate spin-lattice order
- Magnons confined within basal plane bi-layers
- Hypothesis: intertwined electronic screening and modulated magnetism

Is a modulated Neel-Kondo phase possible?

MOTT TRANSITION IN Cr-DOPED V₂O₃

D. B. McWhan, T. M. Rice, and J. P. Remeika Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey 07974 (Received 8 August 1969)

Photoemission: Mott insulator

Collaborators V₂O₃

J. C. Leiner H. O. Jeschke R. Valenti S. Zhang A. T. Savici Jiao Lin M. B. Stone M. D. Lumsden **Jiawang Hong** O. Delaire Wei Bao

CCES and ORNL Okayama U and Goethe U. Goethe U. Frankfurt Johns Hopkins U. ORNL ORNL ORNL ORNL ORNL Duke U. and ORNL Renmin U.

Leiner

Zhang

Phys. Rev. X 9, 011035 (2019).

IQM-EFRC Research funded by US DOE-BES DE-SC0019331

Ultra Short range correlations in Pl

distance $(Å)$	J_j	DFT (meV)
2.71072	J_1	-0.3(6)
2.87799	J_2	8.5(3)
3.46255	J_3	0.6(3)
3.68774	J_4	0.0(2)
4.29734	J_5	-1.2(7)
4.94240	J_6	1.7(2)

J6/J2=0.2 is in the frustrated regime where neither interaction dominates

Self consistent Gaussian Approximation

Include **all** DFT determined Exchange interactions (3D)

le1

رال (10, س) (mb sr⁻¹ meV⁻¹ f.u.⁻¹)

0

0.5

Development of Coherent Magnon

AFI: Frustration relieved!

INSTITUTE FOR QUANTUM MATTER

Relieving frustration in $(V_{1-x}Cr_x)_2O_3$

Conclusions V₂O₃

The PI state is frustrated by competing spin interactions on the honeycomb lattice
The PI to AFI transition is an instability that relieves magnetic frustration
LDA+U can now produce quantitatively reliable exchange interactions even near the MIT
Ever closer to "understanding" V₂O₃?

Conclusions

 The PI state is frustrated by competing spin interactions on the honeycomb lattice

 $\Box V_2 O_3$

- The PI to AFI transition is an instability that relieves magnetic frustration
- LDA+U can now produce quantitatively reliable exchange interactions even near the MIT
 Ever closer to "understanding" V₂O₃?

The ongoing quest for a QSL:
 Proximity to the MIT may be a good indicator
 Ideas needed to circumvent structural instabilities

Mott Transition in the A15 Phase of Cs₂C₆₀: Absence of a Pseudogap and Charge Order

H. Alloul,¹ P. Wzietek,¹ T. Mito,¹ D. Pontiroli,² M. Aramini,^{3,2} M. Riccò,² J. P. Itie,⁴ and E. Elkaim⁴

INSTITUTE FOR QUANTUM MATTER

Scattering from band electrons

Spin correlations in different phases of V_2O_3

Incommensurate Spin Density Wave in Metallic $V_{2-y}O_3$

Wei Bao,¹ C. Broholm,^{1,2} S. A. Carter,³ T. F. Rosenbaum,³ G. Aeppli,⁴ S. F. Trevino,^{2,5} P. Metcalf,⁶ J. M. Honig,⁶ and J. Spalek⁶

Spin correlations in V₂O₃

Driven by frustration, the spin-liquid like character of the PI is central to the physics of V2O3

Direct Observation of the Bandwidth Control Mott Transition in the $NiS_{2-x}Se_x$ Multiband System

H. C. Xu,¹ Y. Zhang,¹ M. Xu,¹ R. Peng,¹ X. P. Shen,¹ V. N. Strocov,² M. Shi,² M. Kobayashi,² T. Schmitt,² B. P. Xie,^{1,*} and D. L. Feng^{1,†}

Mott Physics in triangular organic lattices

Kazushi Kanoda et al.

iqm.jhu.edu

INSTITUTE FOR QUANTUM MATTER

Phases of a kagome staircase

Modulated magnetic phases

2.2 K<T< 4 K

4 K<T< 6.5 K

6.5 K<T<9.2 K

Commensurate Canted FM

Incommensurate Cycloidal

Incommensurate amplitude modulated

INSTITUTE FOR QUANTUM MATTER

Exchange Interactions

Frustrated Magnetism & Ferroelectricity

Lawes et al (2005)

INSTITUTE FOR QUANTUM MATTER

Tri-linear coupling in Ni₃V₂O₈

INSTITUTE FOR QUANTUM MATTER

Landau Theory of Magneto-Electricity

A. B. Harris and Taner Yildirim

General case:

$$V = \sum_{nm\gamma} c_{nm\gamma} \sigma_n(\mathbf{q}) \sigma_m(-\mathbf{q}) P_{\gamma}$$

<u>Amplitude modulated ($\Gamma_{\underline{4}}$)</u> $V_{HTI} = \sum_{\gamma} c_{44\gamma} |\sigma_4(\mathbf{q})|^2 P_{\gamma} \equiv \mathbf{0}$

<u>Cycloid state $(\Gamma_4 + \Gamma_1)$ </u> $V_{LTI} = c_{14y} (\sigma_1(\mathbf{q}) \sigma_4(-\mathbf{q}) + \sigma_4(\mathbf{q}) \sigma_1(-\mathbf{q})) P_y$

IRREP	1	2_X	\widetilde{m}_{y}	\widetilde{m}_z
Γ_1	1	1	1	1
Γ_2	1	1	-1	-1
Γ ₃	1	-1	1	-1
Γ_4	1	-1	-1	1

iqm.jhu.edu

INSTITUTE FOR QUANTUM MATTER

Chirality hysteresis in FE state

iqm.jhu.edu

INSTITUTE FOR QUANTUM MATTER