Molecular metals – test ground for correlated electrons in a compressible lattice

Michael Lang Goethe-Universität Frankfurt

SPICE Workshop 09.-11. December 2019, Mainz

Collaborators

E. Gati*, B. Wolf, U. Tutsch, H. Schubert, J. Müller Physikalisches Institut, Goethe-Universität Frankfurt, SFB TR49 *Ames Lab, Iowa State University, USA

M. Garst

Institut für Theoretische Physik, Universität zu Köln und TU Dresden Institut für Theoretische Physik, Universität Karlsruhe

J. Fischer, P. Lunkenheimer, H.-A. Krug von Nidda, F. Kolb, Exp. Phys. V, Augsburg University

M. Matsuura, A. Nakao Neutron Science and Technology Center, Tokai, Japan

T. Sasaki, S. Iguchi IMR, Tohoku University, Sendai, Japan

O. Stockert MPI CPfS Dresden, Germany

R. Valentí, S. Winter, S. Biswas Institut für Theoretische Physik, Goethe-Universität Frankfurt

H. Jeschke

Institut für Theoretische Physik, Goethe-Universität Frankfurt and Research Inst. for Interdiscipl. Science, Okayama University, Japan

J.A. Schlueter Materials Science Division, Argonne National Laboratory, USA

SPICE Workshop 09.-11. December 2019, Mainz

Building blocks

e.g. (TMTSF)₂PF₆

- Weak intermolecular overlap: small W (~ U)
- Low dimensionality
- Small charge carrier concentration
- favourable for long-range
 Coulomb interactions (~ V)

⇒ strongly correlated (U + V) π -electrons ⇒ soft lattice (compressibility > $10 \cdot \kappa_T^{Cu}$)

$X = Cu[N(CN)_2]Cl$ (TMTSF)2CIO4 Cu[N(CN)₂]Br (TMTTF)₂AsF₆ (TMTTF)₂Br (TMTTF)₂SbF₆ (TMTTF)₂PF₆ (TMTSF)2PF6 50 1D loc $(TM)_2X$ 100 ----40 Mott Temperature (K) insulator 🕶 CO metal 30 metal 2D 7 [K] 10 SP 20 3D afm AFM AFM SDW 10 Kanoda, Dressel et al., SC SCperc SC Physica C 287, Crystal 2, 528 0 299 (1997) (2012)100 150 200 250 300 350 400 450 0 50 Pressure ~5 kbar P [bar]

 \Rightarrow Test grounds for studying correlated electrons under well-controlled conditions \Rightarrow Systematic investigations on fundamental aspects of correlation physics

Phase diagrams

 $(TM)_2X$

 κ -(BEDT-TTF)₂X (" κ -X")

- Fundamental aspects of the Mott transition in κ-(ET)₂Cu[N(CN)₂]Cl – involvement of lattice degrees of freedom
- 2) Signatures of ferroelectricity/multiferroicity in κ-(ET)₂Cu[N(CN)₂]Cl – open issues
- The case of κ-(ET)₂Hg(SCN)₂Cl

 a proof-of-principle demonstration for ferroelectricity in dimerized (ET)₂X
- 4) Phonon anomalies in κ-(ET)₂Cu[N(CN)₂]Cl
 coupling to intra-dimer electronic degrees of freedom

 $(V_{1-x}Cr_{x})_{2}O_{3}$

Cf. McWham *et al.*, PRB **7**, 1920 (73) Limelette *et al.*, Science **302**, 89 (03) Georges *et al.*, J. Phys. **114**, 165 (04) κ-(BEDT-TTF)₂Cu[N(CN)₂]Cl ("κ-Cl")

Cf. Lefebvre *et al.*, PRL **85**, 5420 (00) Limelette *et al.*, PRL **91**, 016401 (03) Fournier *et al.*, PRL **90**, 127002 (03) Kagawa *et al.*, PRB **69**, 064511 (04)

The Mott transition

Purely electronic picture sufficient for real materials?

The Mott transition

Role of a compressible lattice? (cf. pressure dependence!) Universal properties?

The Mott transition

→ Ising universality class! (for purely electronic systems)

long-range shear forces: suppression of microscopic fluctuations Ising criticality → Mean-field criticality

SPICE Workshop 09.-11. December 2019, Mainz

Experimental test

\Rightarrow explore lattice effects $\Delta L/L$ around the Mott transition under control of *T* and *p*!

\Rightarrow combine high-resolution dilatometry with He-gas pressure

Thermal expansion under He-gas pressure

Manna et al., Rev. Sci. Instrum. 83, 085111 (12)

SPICE Workshop 09.-11. December 2019, Mainz

SPICE Workshop 09.-11. December 2019, Mainz

Breakdown of Hooke's law

 \Rightarrow Observations ($|\Delta \kappa| \sim \kappa$) consistent with

"critical elasticity"

i.e., a strong coupling of electrons ⇔ compressible lattice

 \Rightarrow Suggesting

 \rightarrow intriguing cross-correlations \rightarrow new functionalities !?

⇒ Relevant for any pressure-tuneable Mott system → κ -(BEDT-TTF)₂X, Et_xMe_{4x}Z[Pd(dmit)₂]₂, ... → (V_{1-x}M_x)₂O₃, NiO, PbCrO₃, ...

- Fundamental aspects of the Mott transition in κ-(ET)₂Cu[N(CN)₂]Cl – involvement of lattice degrees of freedom
- 2) Signatures of ferroelectricity/multiferroicity in κ -(ET)₂Cu[N(CN)₂]Cl open issues
- The case of κ-(ET)₂Hg(SCN)₂Cl

 a proof-of-principle demonstration for ferroelectricity in dimerized (ET)₂X
- 4) Phonon anomalies in κ-(ET)₂Cu[N(CN)₂]Cl
 coupling to intra-dimer electronic degrees of freedom

P. Lunkenheimer et al., Nature Mater. 11, 755 (2012)

Drop in σ around 26 K:

- partial charge localization (charge-order) !?
- coinciding with $T_{\rm N}$

 \Rightarrow order-disorder type ferroelectric order coinciding with T_N !

 \Rightarrow multiferroic !

Seo, Fukuyama JPSJ **66**, 1249 (1997)

Experiment:

Chow *et al.*, PRL **85**, 1698 (2000)

SPICE Workshop 09.-11. December 2019, Mainz

CO-driven ferroelectricity

Van den Brink, Khomskii J. Phys. Cond. Matt. **20**, 434217 (2008)

\Rightarrow electronic ferroelectricity

Cf. displacive ferroelectrics:

off-center motion of ions in

 \rightarrow same phenomenology found for κ -(BEDT-TTF)₂Cu[N(CN)₂]Cl !

SPICE Workshop 09.-11. December 2019, Mainz

Dielectric anomalies in κ -(ET)₂Cu₂(CN)₃

M. Abdel-Jawad *et al.,* Phys. Rev. B **82**, 125119 (2010)

relaxor ferroelectricity

Assigned to "intra-dimer degrees of freedom"

C. Hotta, Phys. Rev. B **82**, 241104(R)(2010)

M. Naka, S. Ishihara, J. Phys. Soc. Jpn. **79**, 063707 (2010)

T. Clay *et al.*, Physica B **405**, S253 (2010)

H. Gomi *et al*., Phys. Rev. B **87**, 195126 (2013)

Problem: no spectroscopic evidence for charge disproportionation $\delta > 0.005 \ e!$

K. Sedlmeier et al., PRB 86, 245103 (2012)

\rightarrow Calls for a test case in dimerized (ET)₂X !?

- 1) Fundamental aspects of the Mott transition in κ -(ET)₂Cu[N(CN)₂]Cl involvement of lattice degrees of freedom
- 2) Signatures of ferroelectricity/multiferroicity in κ-(ET)₂Cu[N(CN)₂]Cl – open issues
- 3) The case of κ-(ET)₂Hg(SCN)₂Cl

 a proof-of-principle demonstration for ferroelectricity in dimerized (ET)₂X
- 4) Phonon anomalies in κ-(ET)₂Cu[N(CN)₂]Cl
 coupling to intra-dimer electronic degrees of freedom

The case of κ -(ET)₂Hg(SCN)₂Cl

Konovalikhin et al., Bull. of Russ. Acad. Sci., Div. Chem. Scien. 41, 1819 (1992) moderate dimerization

t₁ (meV)

126

167

185

 \Rightarrow charge disproportionation

 $\delta = \pm 0.1 e$

GOETHE **UNIVERSI** FRANKFURT AM MAIN

200

1520

- sharp peak at $T \approx T_{CO}$
- $\epsilon'(T) \propto C/(T \theta_{CW})$
- no significant frequency dependence below about 1 MHz

\Rightarrow ferroelectric transition

indicative of 1st-order order-disorder type ferroelectric transition at T_{CO}

- Fundamental aspects of the Mott transition in κ-(ET)₂Cu[N(CN)₂]Cl – involvement of lattice degrees of freedom
- 2) Signatures of ferroelectricity/multiferroicity in κ-(ET)₂Cu[N(CN)₂]Cl – open issues
- The case of κ-(ET)₂Hg(SCN)₂Cl

 a proof-of-principle demonstration for ferroelectricity in dimerized (ET)₂X
- 4) Phonon anomalies in κ-(ET)₂Cu[N(CN)₂]Cl
 coupling to intra-dimer electronic degrees of freedom

Phonon anomalies in κ-(ET)₂Cu[N(CN)₂]Cl

SPICE Workshop 09.-11. December 2019, Mainz

GOETHE UNIVERS

Single crystals κ -(d8-ET)₂Cu[N(CN)₂]Cl (T_N = 27K)

Ç

FRM2 6 crystals (~9 mg, ~5 mm³)

Triple-axis spectrometers

IN8@ILL France, 2x108/cm-2s-1

PUMA@FRM2 Germany, ~108/cm⁻²s⁻¹

- phonon peaks at *E* = 2.6, 6, 8 and 11 meV
- peak widths $\Delta E_{\text{FWHM}} \approx 2.3 \text{ meV} >> \Delta E_{\text{res}} \approx 0.5 \text{ meV}$
 - \Rightarrow finite lifetime $\tau_q \sim \Gamma_q^{-1}$
 - $\Rightarrow \Gamma_q$ from fits (damped harmonic oscillators)

M. Matsuura et al., Phys. Rev. Lett. 123, 027601 (2019)

- phonon peaks at E = 2.6, 6, 8 and 11 meV
- peak widths $\Delta E_{\text{FWHM}} \approx 2.3 \text{ meV} >> \Delta E_{\text{res}} \approx 0.5 \text{ meV}$
 - \Rightarrow finite lifetime $\tau_q \sim \Gamma_q^{-1}$
 - $\Rightarrow \Gamma_q$ from fits (damped harmonic oscillators)
- modes at E = 6, 8 and 11 meV almost independent on cooling to 75 K

M. Matsuura et al., Phys. Rev. Lett. 123, 027601 (2019)

- phonon peaks at E = 2.6, 6, 8 and 11 meV
- peak widths $\Delta E_{\text{FWHM}} \approx 2.3 \text{ meV} >> \Delta E_{\text{res}} \approx 0.5 \text{ meV}$
 - \Rightarrow finite lifetime $\tau_q \sim \Gamma_q^{-1}$ $\Rightarrow \Gamma_q$ from fits (damped harmonic oscillators)
- modes at E = 6, 8 and 11 meV almost independent on cooling to 75 K
- strong renormalization of mode at 2.6 meV

 $\Rightarrow \omega_q \approx \Gamma_q$

M. Matsuura et al., Phys. Rev. Lett. 123, 027601 (2019)

- phonon peaks at *E* = 2.6, 6, 8 and 11 meV
- peak widths $\Delta E_{\text{FWHM}} \approx 2.3 \text{ meV} >> \Delta E_{\text{res}} \approx 0.5 \text{ meV}$
 - \Rightarrow finite lifetime $\tau_q \sim \Gamma_q^{-1}$ $\Rightarrow \Gamma_q$ from fits (damped harmonic oscillators)
- modes at E = 6, 8 and 11 meV almost independent on cooling to 75 K
- strong renormalization of mode at 2.6 meV

 $\Rightarrow \omega_q \approx \Gamma_q$ $\Rightarrow T \text{ dependent}$

• Overdamped modes ($\omega_q \approx \Gamma_q$) for a wide range of temperatures

charge fluctuations $\omega_{ch} \sim 1-2 \text{ meV}$

Intra-dimer charge fluctuations ($\omega_{ch} \sim 1-2 \text{ meV}$)

 κ -(ET)₂Cu[N(CN)₂]Cl

 \Rightarrow Fluctuating dipoles at the brink of static charge order !?

$\kappa\text{-}(\mathsf{BEDT}\text{-}\mathsf{TTF})_2\mathsf{Cu}[\mathsf{N}(\mathsf{CN})_2]\mathsf{CI}$

 κ -(BEDT-TTF)₂Cu₂(CN)₃

phonon calculations:

in progress

Dressel *et al.*, PRB **93**, 081201 (R) (2016)

Attempt to identify the low-lying mode

 κ -Cu₂(CN)₃ 3.1 meV

4.1 meV

(cf. E = 2.6 meV for κ -Cl)

- less dense out-of plane packing
- less rigid anion network

 \Rightarrow Softer spring constants expected for κ -Cl as compared to κ -CN

 κ -(ET)₂X: correlated electrons coupled to a compressible lattice

$X = Cu[N(CN)_2]CI$

Mott physics (@ p = 230 bar)

Hugh changes of the compressibility around the Mott transition

 \Rightarrow indicating *critical elasticity*

Beyond Mott (p = 0)

Signatures for electronic ferroelectricity/multiferroicity accompanied by strong phonon renormalization effects \Rightarrow fluctuating dipoles at the brink of static ferroelectricity !?