

Nematic superconductivity in the doped topological insulators $M_xBi_2Se_3$

SPICE Mainz

Kristin Willa Karlsruhe Institute of Technology Institut für Festkörperphysik

Acknowledgments

A. Kayani, P. Niraula, E. Bokari

M.P. Smylie, H. Claus, A. E. Koshelev, K. W. Song, Z. Islam, R. Willa, U. Welp, W.-K. Kwok

G. D. Gu, R. D. Zhong, J. A. Schneeloch

A. Rydh

Alexander von Humboldt Stiftung/Foundation

Swiss National Science Foundation

Topological insulators

gap less, symmetry protected, spin-momentum locked surface states

What would happen if we could induce superconductivity in these surface states?

Superconducting surface states or vortex cores could host zero energy bound states: so called Majorana states.

This would allow for topologically protected quantum computations that are free from decoherence.

SPICE Mainz Kitaev, Phys.-Usp. 44, 131 (2001) Sato, PLB 575, 126-30 (2003) Kitaev, AIP Conf. Proc. 1134, 22-30 (2009) Ando, JPSJ 82, 102001 (2013) Institut für Festkörperphysik

How can we get topological superconductors?

Proximity effect

Doping bulk topological insulators

Se

Doped topological insulator Bi₂Se₃

a*

a

Trigonal crystal structure

- → 6-fold symmetry in the plane
- Van-der-Waals gap Doping achieved with Cu, Nb, Sr
- Quintuple layers

no mirror symmetry in the a-c plane

mirror symmetry in the a*-c plane

B

Superconductivity in doped Bi₂Se₃

First report of superconductivity in Cu doped Bi₂Se₃ Doping of about 10% necessary

Topological nature of the surface states preserved

SPICE Mainz Hor et al., PRL104,057001 (2010)

Kriener et al., PRL106,127004 (2011)

First indications of nematic superconductivity

2-fold symmetry in the superconducting state despite trigonal crystal structure

Is this a sign of the superconducting gap structure or are there external or more conventional sources responsible for this two fold symmetry?

SPICE Mainz

) Pan et al, Sci. Rep., **6**, 28632 (2016)

Asaba et al, Phys. Rev. X, **7**, 011009 (2017)

Nanocalorimetry setup

Thermometer Offset heater Thermalization Ac heater Offset heater

Specifications:

- GeAu thermometer
- Ti+Au thermometer pads -
- Ti ac/dc heater
- 150nm SiN membrane

- High-sensitive differential calorimetry
- RT to mK with mK temperature stability
- very small samples

µg samples

SPICE Mainz

Specific heat of doped Bi₂Se₃

Superconducting transition in

SPICE Mainz

Yonezawa et al., Nat Phys 13, 123–126 (2017)

Pan et al., Sci. Rep. 6, 28632 (2016) Institut für Festkörperphysik

 $\Delta C/T = 0.27 \text{ mJ/molK}^2$

Difference in $\Delta C/T$ due to difference in carrier concentration

Institut für Festkörperphysik

Nematic superconductivity in Nb_xBi₂Se₃

SPICE Mainz

Transport measurements of Sr_xBi₂Se₃

SPICE Mainz

Argonne Karlsruhe Institute of Technology

Effective mass anisotropy?

Magnetic anisotropy?

Structural distortions?

Crystal shape? Vortex motion? Misalignment of the magnetic field?

Smylie, Willa et al., Sci. Rep. 8, 7666 (2018)

Possible gap structures

SPICE Mainz

Transport measurements on Sr_xBi₂Se₃

SPICE Mainz

SPICE Mainz

TDO measurements of Nb_xBi₂Se₃

4.0

4.5

3.5

3.0

TDO measurements of Nb_xBi₂Se₃

Clear T² behavior down to low temperatures for the pristine sample¹

5 MeV proton irradiation done at the tandem van-de-Graaff accelerator at Western Michigan University

Reduction of T_c and increase in residual resistivity upon increasing the dose of proton irradiation

 T^2 behavior survives strong proton irradiation up to 5x10¹⁶p/cm² (lowering T_c by about 25%)

Evidence of point nodes (Δ_{4x})

Orientation of the nematic axis

SPICE Mainz

Orientation of the nematic axis

SPICE Mainz

Smylie, Willa et al., Sci. Rep. 8, 7666 (2018) Institut für Festkörperphysik

SPICE Mainz

Can strain switch the nematic axis?

Same procedure - two crystals cut from a larger crystal at 90°

SPICE Mainz

Can strain switch the nematic axis?

Same procedure - two crystals cut from a larger crystal at 90°

→ • almost uniaxial strain
• maximal strain ε ≈ 0.6%

Institut für Festkörperphysik

T [K]

30

330

- 3.0

2.9

2.8

2.7

2.6

2.5

2.4

2.3

2.2

2.1

2.0

1.9

- 1.8

1.7

2.9

2.8

2.7

2.6

2.5

2.4

2.3 2.2 2.1

2.0

1.9

1.8

1.7

SPICE Mainz

Institut für Festkörperphysik

SPICE Mainz

350

3.0

Rotational symmetry breaking in the superconducting state

No anisotropy of the normal state

Strain was not able to switch the nematic axis

predetermined in each