A perspective on the synthesis and modifications of 2D transition metal dichalcogenides by vacuum methods

Matthias Batzill University of South Florida

Contributions: Paula M. Coelho; Kinga Lasek, Maggie Ma, Manuel Bonilla, Sadhu Kolekar, Jingfeng Li, Lu'an Guo. Synchrotron: Maria Asensio, Jose Avila (SOLEIL); Manuel Valvidares; Pierluigi Gargiani (ALBA) DFT: Ivan Oleynik; Kien-N. Cong (USF); Krzysztof Zberecki (Warsaw University of Technology); Arkady Krasheninnikov (HZ Dresden)

Transition metal dichalcogenides

OF

SOUTH FLORIDA

USF

Professor Atsushi Koma, University of Tokyo (from 1984)---- http://van-der-waals-epitaxy.info/

epitaxy

Van der Waals epitaxy

Outline

- 1. VSe₂: Competition between ferromagnetic and charge density order?
- 2. VTe_2 : A new monolayer CDW material.
- 3. $CrTe_2$ monolayer synthesis by van der Waals epitaxy. But is it 1T or 1H?
- 4. Magnetic defects and dopants: Possible diluted ferromagnetic 2D semiconductors.

Can a transition metal dichalcogenide that is paramagnetic in bulk become ferromagnetic as a monolayer?

Theory: Evidence of the Existence of Magnetism in Pristine VX₂ Monolayers (X = S, Se) and Their Strain-Induced Tunable Magnetic Properties

Yandong Ma, Ying Dai,* Meng Guo, Chengwang Niu, Yingtao Zhu, and Baibiao Huang

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China.

VOL.6 = NO.2 = 1695-1701 = 2012

Density Functional Theory

		ferromagnetic	H vs. T structure
Y. Ma, B. Huang	ACS Nano 6, 1695 (2012).	✓.	Т
P. Manchanda, R. Skomski	J. Phys.: Condens. Matter 28, 064002 (2016).	✓.	Н
A.H.M.A. Wasey, G.P. Das	J. Appl. Phys. 117, 064313 (2015)	✓.	н
WY. Tong,CG. Duan	Nature Commun. 7, 13612 (2016)	✓.	н
J. Du, J. Li	Nanoscale 9, 17585 (2017)	✓.	Н
M. Hester, R. Hennig, D.C. Johnson	Phys. Rev. B 96, 235147 (2017)	✓.	T or H
HR. FuhHT. Jeng	Sci. Rep. 6, 32625 (2016)	✓.	н
F.Y. Li,Z.F. Chen	J. Phys. Chem. C 118, 21264 (2014)	✓.	T or H
		✓.	

 \Rightarrow DFT consistently predicts a <u>ferromagnetic ground state</u> for VSe₂ (also VS₂ or VTe₂).

Magnetism in VSe₂

Exfoliated VSe2

Angewandte

Inorganic Graphene Analogues

DOI: 10.1002/anie.201304337

Ultrathin Nanosheets of Vanadium Diselenide: A Metallic Two-**Dimensional Material with Ferromagnetic Charge-Density-Wave Behavior****

Kun Xu, Pengzuo Chen, Xiuling Li, Changzheng Wu,* Yuqiao Guo, Jiyin Zhao, Xiaojun Wu, and Yi Xie*

Nano Lett. 18, 5432 (2018)

Is monolayer VSe₂ ferromagnetic?

Density Functional Theory Predictions of magnetism in VSe₂

Slide 12

=> DFT consistently predicts an itinerant (band) magnet for monolayer VSe₂.

- ⇒ DFT also predicts an itinerant magnet for bulk VSe₂ (with smaller energy separation between minority/majority bands)
- => Contradiction to experiment? VSe₂ is paramagnetic

SOUTH FLORIDA

DFT comparison to ARPES

=> Spin polarized DFT predicts spin-split (majority/minority) bands (up to 500 meV).

> ⇒ No spin split bands are observed in ARPES. ⇒ DFT predictions are wrong, monolayer VSe₂ is not an itinerant magnet.

=> ARPES data, are well reproduced by non-spin polarized DFT. => VSe₂ is not an itinerant magnet.

Slide 14Why does DFT predict a spin-polarized ground state?

Competing ground states?

 VSe_2 is known to exhibit a CDW in the bulk.

A. Pasztor....C. Renner, 2D Mater. 4 (2017) 041005

Does the CDW order compete with the ferromagnetic ordering for the ground state?

Does the monolayer exhibit a CDW and how does it affect ferromagnetic ordering?

US

STM at 80 K shows charge density wave superstructure

Slide 16 Can CDW be described by Fermi-surface nesting?

STM at 15 K shows CDW

NIVERSITY OF

SOUTH FLORIDA

USF

Can CDW be described by Fermi-surface nesting? Slide 17

SOUTH FLORIDA

Real vector length (in units of a)	Rotation angle	Reciprocal vector length (in units of a*)	Reciprocal vector length (in Å ⁻¹)	Experimental separation of the Fermi-sheets (in Å ⁻¹)	Mismatch
2√3	30°	0.29	0.62	0.56	-10%
√19	23.4°	0.23	0.5	0.56	+11%
√28	19.1°	0.19	0.41	0.57	+28%
√ 13	13.9°	0.28	0.6	0.58	-3%
√21	10.9	0.22	0.47	0.59	+20%
√31	8.9°	0.18	0.39	0.60	+35%
4	0°	0.25	0.54	0.65	+17%

US

SOUTH FLORIDA

CDW or FM ordering

Phonon modes for spin-polarized and non-spin polarized DFT calculations.

- \Rightarrow Only if VSe₂ is non-magnetic a CDW is expected.
- ⇒ Observation of CDW is consistent with the absence of spin-split bands in ARPES

NIVERSITY OF

SOUTH FLORIDA

USF

Re-examining DFT predictions

Phonon modes for spin-polarized and non-spin polarized DFT calculations.

⇒ phonon instability, i.e. forms a CDW=> experiment

Lowest energy structure search using evolutionary crystal structure prediction method USPEX (with CDW unit cell as only input).

=> CDW order has lower energy than ferromagnetic ordered state.

INIVERSITY OF

SOUTH FLORIDA

US

Slide 20

R. Chua, ... A.T.S. Wee; Adv. Mater. 2000693 (2020)

- VSe₂ monolayers on various substrates (after annealing) exhibit M-H hysteresis loops.
- There is mo evidence for itinerant magnetism in ARPES and XMCD shows no magnetic moment.
- Monolayers exhibit a CDW and DFT suggest it is lower in energy than a ferromagnetically ordered state => CDW is ground state.
- Weak magnetization is observed in defective VSe₂.

Outline

- 1. VSe₂: Competition between ferromagnetic and charge density order?
- 2. VTe₂: A new monolayer CDW material.
- 3. $CrTe_2$ monolayer synthesis by van der Waals epitaxy. But is it 1T or 1H?
- 4. Magnetic defects and dopants: Possible diluted ferromagnetic 2D semiconductors.

Slide 23 Other vanadium dichalcogenides: VTe₂

Bulk structure of VTe₂ (also TaTe₂, NbTe₂)

Other vanadium dichalcogenides: VTe₂

Are interlayer Te...Te interactions important?

Slide 25

JOURNAL OF SOLID STATE CHEMISTRY 99, 189-199 (1992)

outh florida

Importance of Short Interlayer Te···Te Contacts for the Structural Distortions and Physical Properties of Cdl₂-Type Layered Transition-Metal Ditellurides

ENRIC CANADELL

Laboratoire de Chimie Théorique, Bât. 490, Université de Paris-Sud, 91405 Orsay, France

STÉPHANE JOBIC, RAYMOND BREC, AND JEAN ROUXEL

Laboratoire de Chimie des Solides, Institut des Matériaux de Nantes, 2 rue de la Houssinière, 44072 Nantes Cédex 03, France

AND MYUNG-HWAN WHANGBO

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204

Received October 10, 1991; in revised form January 20, 1992; accepted January 23, 1992

monolayer VTe₂ is 'simple' 1T

STM 300 K

J. Phys. Chem. Lett. 10, 4987-4993 (2019)

=> Is monolayer VTe₂ a new CDW material?

Same 4x4 CDW as isoelectronic (bulk) VSe₂

A. Pasztor....C. Renner, 2D Mater. 4 (2017) 041005

INIVERSITY OF

SOUTH FLORIDA

USF

20 K

4x4 CDW

J. Phys. Chem. Lett. 10, 4987-4993 (2019)

Multilayers of V-telluride Slide 28 Mono-layer Multilayer Mono + Bilayer

Layer-dependent structure change in VTe₂

0

'Y OF

SOUTH FLORIDA

USF

Bi- and Multilayer VTe₂

Are multilayers 1T' ?

Layer-dependent structure change in VTe₂

Slide 30

JNIVERSITY OF

SOUTH FLORIDA

USF

K. Lasek....M.B. ACS Nano 2020, 14, 7, 8473–8484

- Monolayer VTe₂ is a simple 1T structure (unlike the bulk that exhibits a distorted 1T" structure).
- The $1T-VTe_2$ monolayer undergoes a 4x4 CDW transition- identical to the isoelectric VSe₂ (in the bulk).
- MBE growth of multilayers likely results in the formation of metal intercalated compound with a V_3Te_4 composition. (its not ferromagnetic)

Outline

- 1. VSe₂: Competition between ferromagnetic and charge density order?
- 2. VTe_2 : A new monolayer CDW material.
- 3. CrTe₂ monolayer synthesis by van der Waals epitaxy. But is it 1T or 1H?
- 4. Magnetic defects and dopants: Possible diluted ferromagnetic 2D semiconductors.

$CrTe_2$

Why are there not more studies on $CrTe_2$?

 $CrTe_2$

Why are there not more studies on $CrTe_2$?

Answer: $CrTe_2$ (also $CrSe_2$) is metastable and decomposes at ~330 K (~ 600 K) into an 'intercalation' compound and chalcogens.

Can we get a monolayer by MBE growth?

CrTe₂

Ab initio MD simulations

SOUTH FLORIDA

K. Lasek....M.B. ACS Nano 2020, 14, 7, 8473–8484

20

USF SOUTH FLORID

Monolayer (some bilayer)

 $CrTe_2$

Multilayer films

65eV-K. Lasek....M.B. ACS Nano 2020, 14, 7, 8473–8484

60eV

Is CrTe₂ 1T or 2H phase?

Cr Ie₂

1T or 2H?

Available bulk samples are 1T.

Kerr measurements on $CrTe_2$ flakes at RT.

ACS Appl. Mater. Interfaces (2020) 12, 30702– 30710

J. Phys.: Condens. Matter 27, 176002 (2015).

BUT: the synthesis involves formation of a K: $CrTe_2$ intercalation to stabilize the $CrTe_2$ -layers and subsequently a low temperature extraction of the potassium atoms. K-doping may stabilize the 1T phase (like for MoS_2).

-0.1

Photon energy (eV)

2K

=> MBE grown monolayer (1H) $CrTe_2$ is not ferromagnetic.

USF UNIVERSITY OF SOUTH FLORIDA

SOUTH FLORIDA

Can $Cr_{3}Te_{4}$ be used as for van der Waals heterostructures?

Ab-intio MD simulations suggest that Cr3Te4 is stable on a vdW substrate with a vdW gap.

Multilayers of MBE grown Cr_3Te_4 are ferromagnetic with potential for van der Waals epitaxy.

- $CrTe_2$ is metastable but can be stabilized as a monolayer when grown at low growth temperatures (~ 300 °C) by MBE.
- The monolayer is semiconducting 1H-phase with a gap ~ 0.3 eV (smaller than predicted by DFT) and thus is not ferromagnetically ordered.
- Self-intercalated $CrTe_2$ (Cr_3Te_4) may be grown as magnetic van der Waals materials.

Outline

- 1. VSe₂: Competition between ferromagnetic and charge density order?
- 2. VTe_2 : A new monolayer CDW material.
- 3. CrTe₂ monolayer synthesis by van der Waals epitaxy. But is it 1T or 1H?
- 4. Magnetic defects and dopants: Possible diluted ferromagnetic 2D semiconductors.

Line -defects in MBE grown MoSe₂ and MoTe₂

Slide 43

SOUTH FLORIDA

Y. Ma.... M.B. Nature Commun. 8, 14231 (2017)

Are grain boundaries one dimensional electronic systems?

USF

SOUTH FLORIDA

=> these twin grain boundaries are perfect one-dimensional metals?

Y. Ma.... M.B. Nature Commun. 8, 14231 (2017)

Slide 46 How do these grain boundaries form?

Why and how do these twin grain boundaries form? - Incorporation of excess Mo.

Mo

Se/Te

Can we form these grain boundaries by just incorporation of excess Mo into the TMD lattice?

How do these grain boundaries form?

Deposition of Mo on MoTe₂ single crystal substrate at 350 °C

=> Up to ~20% of excess Mo can be incorporated into MoTe₂ lattice to form Mo-rich twin grain boundaries

P.M. Coehlo.... M.B.; ACS Nano 12, 4, 3975-3984 (2018)

Twin grain boundary formation by incorporation of excess Mo is only observed for $MoTe_2$ and $MoSe_2$, but not for MoS_2 .

P.M. Coehlo.... M.B.; ACS Nano 12, 4, 3975-3984 (2018)

Slide 50 DFT simulations for Mo-incorporation into Mo-TMDs

Arkady Krasheninnikov (Helmholtz Zentrum Rossendorf, Germany) & Pekka Hannu-Komsa (Aalto Univ. , Finland) Two Mo excess atom:

One excess Mo-atom ($\mu_{Mo} = \mu_{Mo}$ [atom])					
	Ad-atom	Split- interstitial	Interstitial		
	Mo adatom				
System	Te				
MoTe ₂	- 1.08 eV	- 2.15 eV	<u>- 3.85 eV</u>		
MoSe ₂	- 1.05 eV	<u>- 2.26 eV</u>	- 1.72 eV		
MoS ₂	- 1.48 eV	<u>- 2.51 eV</u>	0.14 eV		

Two excess Mo-atoms ($\mu_{Mo} = \mu_{Mo}$ [dimer])

	Ad-dimer	2-Split- interstitial	2-Interstitials
System	Mo adatoms		
MoTe ₂	- 0.60 eV	0.01 eV	<u>-4.48 eV</u>
MoSe ₂	- 0.46 eV	1.13 eV	<u>-1.35 eV</u>
MoS ₂	<u>- 0.74 eV</u>	0.91 eV	1.45 eV

P.M. Coehlo.... M.B.; ACS Nano 12, 4, 3975-3984 (2018)

Impurity doping in Mo-dichalcogenides

SOUTH FLORIDA

Slide 51

Letter
pubs.acs.org/NanoLett

Which Transition Metal Atoms Can Be Embedded into Two-Dimensional Molybdenum Dichalcogenides and Add Magnetism? J. Karthikeyan,[†] Hannu-Pekka Komsa,[†] Matthias Batzill,[‡] and Arkady V. Krasheninnikov^{*,§,†}

Nano Lett. 2019 19, 4581-4587

USF

SOUTH FLORIDA

Impurity doping in Mo-dichalcogenides

Nano Lett. 2019 19, 4581-4587

Impurity doping in Mo-dichalcogenides

1. Can we dope MoTe₂ in interstitial sites with TM by just vapor deposition?

2. Can magnetic dopants introduce long range magnetic ordering in MoTe2, i.e. can we form a 2D dilute ferromagnetic semiconductor?

 $V=1 \ \mu_{B}$ Ti= 0 μ_{B}

Slide 53

Adv. Electr. Mater. 1900044 (2019)

Undoped MoTe₂

Vacuum annealing to 600 K: Te-vacancies

As received $MoTe_2$

SOUTH FLORIDA

=> Single crystal MoTe₂ only shows weak (defect induced) ferromagnetic ordering. Te-vacancies do not change magnetization.

Adv. Electr. Mater. 1900044 (2019)

SOUTH FLORIDA

V:MoTe₂

Adv. Electr. Mater. 1900044 (2019)

Evidence of diluted 2D ferromagnets

ARTICLE

https://doi.org/10.1038/s41467-020-15877-7 OPEN

Enabling room temperature ferromagnetism in monolayer MoS₂ via in situ iron-doping

Shichen Fu[®] ^{1,8}, Kyungnam Kang^{1,8}, Kamran Shayan[®] ^{2,3,4,8}, Anthony Yoshimura⁵, Siamak Dadras[®] ⁴, Xiaotian Wang¹, Lihua Zhang⁶, Siwei Chen¹, Na Liu^{2,3}, Apoorv Jindal⁷, Xiangzhi Li^{2,3}, Abhay N. Pasupathy⁷, A. Nick Vamivakas[®] ⁴, Vincent Meunier⁵, Stefan Strauf^{2,318} & Eui-Hyeok Yang⁹ ^{1,360}

SOUTH FLORIDA

SCIENCE ADVANCES | RESEARCH ARTICLE

CONDENSED MATTER PHYSICS

Magnetism in semiconducting molybdenum dichalcogenides

Z. Guguchia^{1,2}*, A. Kerelsky^{1†}, D. Edelberg^{1†}, S. Banerjee³, F. von Rohr⁴, D. Scullion⁵, M. Augustin⁵, M. Scully⁵, D. A. Rhodes⁶, Z. Shermadini², H. Luetkens², A. Shengelaya^{7,8}, C. Baines², E. Morenzoni², A. Amato², J. C. Hone⁶, R. Khasanov², S. J. L. Billinge^{3,9}, E. Santos⁵*, A. N. Pasupathy^{1*}, Y. J. Uemura^{1*}

Check for updates

van der Waals epitaxy of Mn-doped MoSe₂ on mica

Cite as: APL Mater. **7**, 051111 (2019); https://doi.org/10.1063/1.5093384 Submitted: 20 February 2019 . Accepted: 29 April 2019 . Published Online: 21 May 2019

M. T. Dau, C. Vergnaud ⁽¹⁰⁾, M. Gay, C. J. Alvarez, A. Marty ⁽¹⁰⁾, C. Beigné, D. Jalabert, J.-F. Jacquot, O. Renault ⁽¹⁰⁾, H. Okuno, and M. Jamet ⁽¹⁰⁾

Save the date and join us for the

5th edition of the European Workshop on

Epitaxial Graphene and 2D Materials (EWEG' 21)

May 25 - 29, 2020

in St. Moritz, Switzerland

Check the webpage for additional information

https://www.empa.ch/web/eweg2d21

Thank you for your attention!

From the Florida-flatlands