

Spin Transport in Magnetic 2D Materials and Heterostructures

Wei Han

2D VAN DER WAALS SPIN SYSTEMS SPICE || August 4th 2020

Outline

- I. Introduction to Magnetic 2D Materials
- II. Spin (Magnon) Transport in Insulating MnPS₃ Flakes
- III. Spin (Electron) Transport in Metallic FeTaS₂ Flakes
 - > Spin scattering mechanisms in $FeTaS_2$
 - ➢ Spin transport in FeTaS₂/SC junctions

IV. Summary

Introduction to Magnetic 2D Materials

Nobel Prize in physics (2010)

Making Graphene Magnetic

Doping of magnetic impurity

Magnetic proximity effect

Yazyev and Helm, PRB (2007) Han, et al, Nature Nanotech (2014)

FM insulator: YIG (Y₃Fe₅O₁₈), EuO

AFM insulator: BiFeO₃

Haugen, et al, PRB (2008) Qiao, et al, PRL (2010) Wei, et al, Nature Materials (2016) Wang, et al, PRL (2015)

Making graphene magnetic

Doping of magnetic impurity

Nair, et al, Nature Physis (2010)

Making graphene magnetic

Introduction to Magnetic 2D Materials

Introduction to Magnetic 2D Materials

Doping of magnetic impurity

а

Extrinsic ferromagnetism

How about intrinsic 2D ferromagnetism?

Bulk Cr₂Ge₂Te₆

Layered structure

V. Carteaux, et al, J. Phys.: Condens. Matter 7, 69 (1995);

H. Ji, et al, J. Appl. Phys. (2013)

9

Bulk Cr₂Ge₂Te₆

Layered structure

V. Carteaux, et al, J. Phys.: Condens. Matter 7, 69 (1995);

¹⁰ H. Ji, et al, J. Appl. Phys. (2013)

Flux method

XRD

Ferromagnetic

Semiconducting

X. Zhang, Y. Zhao, Q. Song, S. Jia, J. Shi, and <u>W. Han*</u>, **Jpn. J. Appl. Phys. 55, 033001 (2016)**

Ferromagnetic 2D flakes

2D flakes: Mechanical exfoliation

W. Xing, Y. Chen, P. Odenthal, X. Zhang, W. Yuan, T. Su, Q. Song, T. Wang, S. Jia, X. C. Xie, Y. Li, and <u>W. Han*</u>, **2D Materials**, **4**, **024009** (2017)

Cr₂Ge₂Te₆

Crl₃

Gong, et al, Nature (2017); Huang, et al, Nature (2017)

Introduction to Magnetic 2D Materials

Chalcogenides	$Cr_2Ge_2Te_6, Cr_2Si_2Te_6, Fe_3GeTe_2, VSe_2^*, MnSe_x^*$	$\begin{array}{l} Fe_{2}P_{2}S_{6}, Fe_{2}P_{2}Se_{6}, Mn_{2}P_{2}S_{6}, Mn_{2}P_{2}Se_{6}, Ni_{2}P_{2}S_{6}, Ni_{2}P_{2}Se_{6}, CuCrP_{2}Se_{6}^{*},\\ AgVP_{2}S_{6}, AgCrP_{2}S_{6}, CrSe_{2}, CrTe_{3}, Ni_{3}Cr_{2}P_{2}S_{9}, MnBi_{2}Te_{4}^{*}, MnBi_{2}Se_{4}^{*} \end{array}$		CuCrP ₂ S ₆
Halides	CrI ₃ *, CrBr ₃ , GdI ₂	CrCl ₃ , FeCl ₂ , FeBr ₂ , FeI ₂ , MnBr ₂ , CoCl ₂ , CoBr ₂ , NiCl ₂ , VCl ₂ , VBr ₂ , VI ₂ , FeCl ₃ , FeBr ₃ , CrOCl, CrOBr, CrSBr, MnCl ₂ [*] , VCl ₃ [*] , VBr ₃ [*]	CuCl ₂ , CuBr ₂ , NiBr ₂ , NiI ₂ , CoI ₂ , MnI ₂	
			α-RuCl ₃	
Others	VS ₂ , InP ₃ , GaSe, GaS	$MnX_3 (X = F, Cl, Br, I), FeX_2 (X = Cl, Br, I),$ MnSSe, TiCl ₃ , VCl ₃	SnO, GeS, GeSe, SnS, SnSe, GaTeCl, CrN, CrB ₂	

Burch, et al., Nature (2018); Gong, et al., Science (2019)

This Talk: Spin Transport in 2D Magnets

Magnon for information computing

Chumak, et al., Nature Physics (2015)

Nonlocal spin transport and magnon transistor

Cornelissen, et al., PRL (2018)

MnPS₃ properties

Crystal and spin structures

Device fabrication

Nonlocal Magnon transport

Injector: Thermal spin injection

Detector: Inverse spin Hall effect

Thermal magnons

Control device fabricated on SiO₂/Si substrates

The absence of spin signal on the control device rules out the possibility of signals from the SiO_2/Si substrate.

Magnon signal – Exponential decay

20

Magnon signal – Exponential decay

21

Magnon signal – Exponential decay

Magnon signal – Exponential decay

The Criteria (exponential vs. $1/d^2$): Shan, et al., PRB (2017)

Absence of magnon signals in thin MnPS₃

Magnon relaxation length in 2D MnPS₃

W. Xing, L. Qiu, X. Wang, Y. Yao, Y. Ma, R. Cai, S. Jia, X. C. Xie, and <u>W. Han*</u>, **Physical Review X 9, 011026 (2019)**

Wenyu Xing

This Talk: Spin Transport in 2D Magnets

Electron spin scattering in metallic FeTaS₂ flakes

Anomalous Hall effect Mechanisms in FM

Nagaosa, et.al., Rev. Mod. Phys. (2010)

Electron spin Transport in Metallic FeTaS₂ Flakes

Layered FeTaS₂

Fe_{0.29}TaS₂

Anomalous Hall resistance in 2D Fe_{0.29}TaS₂

Device fabrication and AHE measurement

Anomalous Hall resistance in 2D Fe_{0.29}TaS₂

Device fabrication and AHE measurement

 $T_C \sim 80$ K, similar to bulk

Anomalous Hall resistance in 2D Fe_{0.29}TaS₂

Thickness dependence of B_c of $Fe_{0.29}TaS_2$

34

Anomalous Hall mechanism in FM

Scaling relationship

Nagaosa, et.al., Rev. Mod. Phys. (2010); Onoda, et.al., Phys. Rev. B. (2008)

Scaling relationship

$$\sigma_{AHE}^* = \sigma_{AHE}/M = \alpha_0 \sigma_{xx} + \beta_0^*$$

Thickness dependent AHE Mechanisms

$$\sigma_{AHE}^* = \alpha_0 \sigma_{xx} + \beta_0^*$$

AHE Mechanisms vs. Channel conductivity

AHE Mechanisms vs. Channel conductivity

R. Cai, W. Xing, H. Zhou, B. Li, Y. Chen, Y. Yao, Y. Ma, X. C. Xie, S. Jia, and <u>W. Han*</u>, **Physical Review B**, 100, 054430 (2019)

Summary: Spin Transport in 2D Magnets

Outlook: Spin Transport in 2D Magnets

Acknowledgement

Collaborators

Shuang Jia

Qing-Feng Sun

Igor Zutic

Xin-Cheng Xie

Students

Wenyu Xing

Ranran Cai

Funding

NSF-China National Basic R&D

Acknowledgement-audience

Email: weihan@pku.edu.cn

Group: http://www2.phy.pku.edu.cn/~LabSpin/home.html