Institute for Basic Science (IBS)

van der Waals layered magnetic semiconductors

Young Hee Lee

Center for Integrated Nanostructure Physics (CINAP) Institute for Basic Science (IBS) Sungkyunkwan University (SKKU), Korea

Collaborators

Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Korea

Dinh Loc Duong Yun, Dr., prof. Team leader CVD,

Yun, Seok Joon Dr. CVD/MFM/optics

Jiang, JinbaoLuong, Dinh HoaDr.Dr.Dev fab/transportCVT

Kim, Young-Min Dr., prof.

TEM

Nguyen, Tuan Dung
Ph D. studentSong, Bumsub
Ph D. studentCVT/Dev fab/transportSTM/STS

nsub Nguy dent Ph

Nguyen, Lan AnhCho, Byeong WookChoi, WooseonPh D. studentPh D. studentPh D. studentCVT/opticsCVD/MFMTEM

Phase transformation in MoTe₂

Cho et al., Science (2015)

Single-crystal growth of 2D materials: wafer-scale is control of the second sec

Keyword : Waferscale + singlecrystal

- Monolayer, multilayer graphene up to 4 layers
- Monolayer hBN film
- Monolayer WS₂, MS₂
- Heterostructure: Gr/hBN

Q: growth platform for wafer-scale SC TMDs from CVD?

Q: Is there an opportunity in unique science phenomena for van der Waals 2D materials?

- 2D ferromagnetism
- vdW 2D ultimate solar cell

Challenge: diluted magnetic semiconductors

Milestone

Nature 546, 270–273, 2017

125 Unsolved Questions in 2005

Diluted magnetic semiconductor (DMS)

Is it possible to create magnetic semiconductors that work at room temperature? Such devices have been demonstrated at low temperatures but not yet in a range warm enough for spintronics applications.

2D vdW DMSs: What dopant?

Choice of materials: semiconductor (WSe₂), homogeneity (V)

What are the challenges in DMS?

Challenge: i) T_c over RT ii) Gate modulation iii) Long-range magnetic order (no phase segregation)

Approach: Room-temperature ferromagnetism in WSe₂ semiconductor via vanadium dopant

inap

Does CVD work for monolayer V-doped WSe₂? **i**b^S **i**nap

Where is the V site in WSe₂?

ADF-STEM image of 2% V-doped WSe₂

Is V-doped WSe₂ really semiconductor?

ap

large gate-modulation with doping concentration below 1%

Can we observe magnetic domain from MFM?

https://www.ntmdt-si.com/resources/spm-prin ciples/atomic-force-microscopy/mfm/dc-mfm

What is the best choice of the tip?

: Pt vs Co tip

Neither morphology nor magnetic phase domains with Pt tip!

No morphology but magnetic phase domains with Co tip!

Evidence of magnetic force interaction!

Evolution of MFM phase contrast with temperature is Contract with temperat

0.1% V-doped WSe₂

-65.5

-77.3

49

Degree (

- 63. Degree (°

-81.2

62. Degree -75.2

Temperature-dependent MFM domains?

a few micrometer magnetic stripes!

domains are merging and splitting with T

→ Evidence of magnetic signal but not electrostatic response

10

Distance (µm)

20

30

Is magnetic domain modulated with magnetized sample?

observation of magnetic domains

dependence of the tip-polarized direction

evidence of the magnetic force interaction!

0.5% V

Is the sample inert under ambient conditions?

MFM phase contrast is partially disrupted in air but recovered by annealing!

V-doping level??: dl/dV STS for density of states

E-E_F (eV)

Song and Loc et al., arXiv preprint arXiv:2002.07333

j₽s €inab

Magnetic ordering can be modulated by gate-bias? is concerned to the second sec

AIP Adv. 10, 065220 (2020)

Spin modulation by gate-bias with MFM ?

Yun & Loc et al., Adv. Sci. 7, 1903076 (2020)

Control magnetic domains by gating

Backgate via MFM tip

MFM

Control T_c by gating

Does V-doped WSe₂ reveal long-range magnetic order?

Loc et al., Appl. Phys. Lett. 115, 242406 (2019) AIP Adv. 10, 065220 (2020)

Carrier-mediated magnetic order is persistent very far from V!

long-range spin-polarized carriers

Take-home lesson:

Room-temperature ferromagnetism in monolayer TMDs and bulk!

Plenty of room for spintronics!