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ORBITRONICS

Orbital angular momentum (OAM) can be manipulated like spin
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Orbital Torque: Torque Generation by Orbital Current Injection
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We propose a mechanism of torque generation by injection of an orbital current, which we call orbital torque.
In a magnetic bilayer consisting of a nonmagnet (NM) and a ferromagnet (FM), we consider a situation where
the spin-orbit coupling (SOC) is present only in the FM. Although the SOC is absent in the NM, the orbital Hall
effect can arise in the NM. When the resulting orbital Hall current is injected to the FM, the SOC of the FM
converts the orbital angular momentum into spin, which exerts torque to the magnetization of the FM. Remark-
ably, even for small SOC strength comparable to that of 3d FMs, the orbital torque can be comparable to the
spin torque induced by the spin Hall effect of the NM with strong SOC. This provides a way to experimentally
probe the OHE and opens a new venue to achieving spin-torque devices based on light elements that exhibit
gigantic orbital response. Experimental implications are discussed.

Spin injection into a ferromagnet (FM) generates a spin
torque (ST) on magnetic moments of the FM by the angu-
lar momentum transfer from the spin of injected conduction
electrons. For ST generation, a spin current source is needed.
A popular source is a nonmagnet (NM) with strong spin-
orbit coupling (SOC), which exhibits sizable spin Hall ef-
fect (SHE). The ST of the SOC origin is called spin-orbit
torque [1–18], which has drawn considerable attention as a
powerful means to electrically control magnetic configura-
tions.

Similar to the SHE, the orbital Hall effect (OHE) allows
for electrical generation of a transverse orbital current. In
transition metals, for example, electron wavefunctions near
atomic cores have mainly d character, and superpositions such
as dzx ± idyz carry the orbital angular momentum Lz = ±h̄.
A flow of wavepackets with such superposed wavefunctions
generates an orbital current. Considering that an orbital cur-
rent carries the angular momentum just like a spin current
does, it is reasonable to expect that injection of an orbital cur-
rent (or orbital injection in short) into a FM may generate a
torque on local magnetic moments of the FM. We call such
torque as orbital torque (OT), which provides an experimen-
tal way to detect the OHE. Although the OHE has not yet been
experimentally verified, theoretical calculations [19, 20] on 4d
and 5d transition metals indicate that the orbital Hall conduc-
tivities (OHCs) of these NM’s are about an order of magnitude
larger than the spin Hall conductivities (SHCs). Moreover, our
recent theoretical analysis finds that the OHC can be gigantic
σOH ∼ 104(h̄/2|e|)(Ω · cm)−1 even in materials with negli-
gible SOC [21, 22]. Thus the OT also provides a new venue
to achieving high torque efficiency in spintronic devices.

In this Letter, we investigate the theoretical idea of the OT
for a NM/FM bilayer structure (Fig. 1). When an in-plane
electric field E is applied, both OHE and SHE arise in the
NM in general [19–22]. In order to focus on the OT due to
the orbital injection, we suppress the SHE by setting the SOC
of the NM zero. Then only OHE is induced and a resulting
torque in the FM can be identified unambiguously as the OT.
We find that the OT indeed arises as long as the SOC of the

FIG. 1. Schematic illustration of the OT in a NM/FM bilayer. The
orbital Hall current generated in the NM flows into the FM. The SOC
of the FM then converts the orbital angular momentum to the spin,
which exerts torque to the magnetization M̂.

FM is finite.
For a quantitative evaluation of the OT, we adopt the tight-

binding description of the bilayer with NNM(NFM) atomic
layer thick NM(FM) [Fig. 2(a)]. We assume both NM and FM
to have the simple cubic structure. For the NM, we adopt the
sp model that has been used previously [21] to illustrate the
OHE without the SOC. In this model, each lattice site can host
s, px, py , and pz orbitals, and the orbital hydridization, which
is crucial for the emergence of the OHE [21], arises from the
symmetry-allowed nearest neighbor hoppings between s and
px,y,z orbitals. For the FM, we adopt a trivial d model; each
lattice site can host dxy , dyz , dzx, dz2 , and dx2−y2 orbitals
with nearest neighboring hoppings allowed. This d model
does not allow any orbital hybridization [23] and thus there
is no OHE [21, 22]. The d model is augmented by adding the
SOC

HFM
so =

αFM
so

h̄2 L · S, (1)

and the exchange coupling HFM
xc = (J/h̄)M̂ · S, where L

is the orbital angular momentum of d character states in the
FM, S is the spin, and M̂ denotes the magnetization direc-
tion of the FM. Below, we focus on the case M̂ = ẑ. At the
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|k, 2⟩ ≃ |k, II⟩ −
iγ(kx − iky)

2∆
|k, III⟩,

|k, 3⟩ ≃ |k, III⟩ −
iγ(kx + iky)

2∆
|k, II⟩, (3)

with energies E2,k ≃ 3(V2 − V1) + 3((3V1 − V2)/8 −
γ2/4∆)k2 and E3,k ≃ 6V2 + (3γ2/4∆ − 3V2/2)k2. The
OAM operator is given by the sum L = (1/N)

∑

i Li

where each Li acts on the Wannier state |i,λ⟩ as the
usual L = 1 angular momentum operator. The two bands
obtained above carry nonzero, chiral OAM as claimed
(L+ = Lx + iLy):

⟨k, 2|L+|k, 2⟩=
iγ

∆
(kx+iky)=−⟨k, 3|L+|k, 3⟩. (4)

The “helicities” of the chiral OAMs are opposite between
the bands, with their magnitudes vanish linearly with |k|
and the ISB parameter γ. In contrast the Rashba model
displays perfect spin polarization irrespective of the wave
vector or the strength of the Rashba parameter λR.
A second check on the existence of chiral OAM is per-

formed by employing the first-principles local-density ap-
proximation (LDA) calculation for a Bi single layer form-
ing a triangular lattice. The choice is inspired by Bi being
a proto-typical p-orbital band material. An external elec-
tric field of 3V/Å perpendicular to the layer was imposed
by hand to mimic the surface potential gradient without
having the complication of dealing with the bulk states.
We also performed calculations for the physically more
realistic case of Bi bi-layer with perpendicular electric
field[8], with results that are entirely in accord with the
statements made below for the single-layer case regarding
the emergence of chiral OAM. To emphasize the relevance
of ISB we again chose to investigate the spin-degenerate
case by turning off SOI in the LDA calculation. The re-
sulting electronic structure for spinless case consisting of
three p-orbital-derived bands is shown in Fig. 1(a). As
the external electric field is turned on, a level repulsion
between the middle (E2 in Fig. 1(a)) and the bottom
(E3 in Fig. 1(a)) band occurs as indicated by circles in
Fig. 1(a). These two bands exhibit the chiral OAM pat-
terns with the maximum OAM vector |⟨L⟩| ≈ 0.96! as
shown in Fig. 1(c) and 1(d), while the third one, shown
in Fig. 1(b), carries much less OAM around the Γ point.
The OAM chiralities of the two bands are opposite, in
accordance with the previous TB analysis. An excellent
fit of the LDA band structure near the Γ point was possi-
ble with the TB parameters V1 = −0.725 eV, V2 = −0.11
eV and γ = 0.2623 eV (Fig. 1(a)). The OAM magnitude
is seen to decrease continuously upon approaching the
Γ point in the LDA calculation (Fig. 1(c) and 1(d)) as
predicted by the TB calculation, Eq. (4).
Having established theoretically the existence of chi-

ral OAM in generic inversion-asymmetric bands by a
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FIG. 1: OAM and CD from first-principles and tight-binding
calculations of Bi monolayer without SOI. (a) LDA band
structure for Bi monolayer with SOI turned off. Perpendic-
ular electric field of 3V/Å was imposed externally. Three
dashed curves represent the tight-binding energy dispersions
around the Γ point. (b)-(d) OAM vectors (green arrows) and
NCD signals (color backgrounds) for the three bands, E1(b),
E2(c), and E3(d) over the whole Brillouin zone marked by a
solid hexagon. Largest OAM has magnitude ≈ 1! for bands
E2 and E3. NCD is calculated with kF,z = 2.27Å−1. (e)-(f)
NCD calculated with kF,z = 0 in Eq. (12) for E2(e) and E3(f)
bands. The opposite color assignments between (c) and (e) is
a consequence of photon energy dependence of the scattering
intensity.

number of methods, we turn to the question of its de-
tection. Spin- and angle-resolved photoemission spec-
troscopy (SARPES) has served to identify the chiral spin
structure of the surface bands in the past[3, 4]. A similar
chiral structure for OAM as demonstrated here cannot,
however, be detected by the same probe since chiral OAM
exists even when SOI is very weak and spin degeneracy
is nearly perfect. Given the potential prevalence of chi-
ral OAM in ordinary, i.e. weak SOI, surface bands, it is
essential to establish detection tools for this new degree
of freedom in band materials and develop some theory of
it.

Circular dichroism (CD) refers to phenomena in which
the physical response of a system to probing light de-
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in the kz = 0 plane, the wavefunction in the upper(lower)
band has radial(tangential) p-orbital character, that is
|uupper

k
⟩ ∼ |pφ⟩ (|ulower

k
⟩ ∼ |pφ+π/2⟩) [Fig. 1(a)]. Here

|uupper(lower)
k

⟩ is the periodic part of the Bloch wavefunction
of the upper(lower) band and |pφ⟩ ≡ cosφ|px⟩ + sinφ|py⟩.
Figure 1(b) shows schematically the wavefunction character
of the eigenstates in the lower band at the Fermi surface.
Note that the expectation value ⟨L⟩ vanishes for each of these
states. Suppose E = Exx̂ (Ex > 0) is then applied to shift
k to k + δk = |k + δk|(cos(φ + δφ), sin(φ + δφ), 0),
where δφ is positive(negative) for positive(negative)
ky . Under this k shift, |ulower

k
⟩ ∼ |pφ+π/2⟩, which can

be written as |pφ+π/2⟩ = |pφ+δφ+π/2⟩ + δφ|pφ+δφ⟩,
evolves with time to exp(−iElower

k+δkδt/h̄)|u
lower
k+δk⟩ +

δφ exp(−iEupper
k+δkδt/h̄)|u

upper
k+δk⟩. Thus, an interband su-

perposition is induced by E. Note that the ratio between
the two coefficients of the states |uupper/lower

k+δk ⟩ is complex,
implying that the superposition contains the component
|px⟩ ± i|py⟩ = |Lz = ±h̄⟩ and its expectation value ⟨Lz⟩
is nonzero. Thus, even when L is completely quenched in
equilibrium, dynamically induced interband superpositions
can have nonzero ⟨L⟩. An explicit calculation results in
⟨L⟩ ∝ δφẑ, which points in opposite directions for positive
and negative ky’s [Fig. 1(b)]. This two-dimensional profile
of ⟨L⟩ in the kz = 0 plane can be easily extended to a three-
dimensional one by rotating Fig. 1(b) around E. Figure 1(c)
shows schematically the resulting three-dimensional profile
of ⟨L⟩ ∝ E × k. Note that although the sum of ⟨L⟩ over
occupied superposed states may vanish, the sum of the orbital
Hall current ∼ ⟨vyLz⟩ is nonzero. This illustrates an intrinsic
mechanism of OHE based on the orbital texture. By the way,
the ⟨L⟩ profile in Fig. 1(c) is similar to the equilibrium ⟨L⟩
profile in orbital Rashba systems [24, 25] despite the crucial
difference that ⟨L⟩ in Fig. 1(c) is evaluated for dynamically
induced nonequilibrium interband superpositions whereas
⟨L⟩ in orbital Rashba systems for equilibrium eigenstates.

Next we restore SOC. Then due to the correlation between
L and S, nonzero ⟨L⟩ in Fig. 1(c) implies ⟨S⟩ to be nonzero.
Thus SOC generates SHE as a concomitant effect of OHE.
The sign of the spin Hall conductivity (SHC) is the same or
opposite to that of the orbital Hall conductivity (OHC) de-
pending on whether the correlation is positive or negative (that
is, S is parallel or antiparallel to L) [Fig. 1(d)].

The orbital texture assumed in Fig. 1(a) occurs even in very
trivial systems. To demonstrate this point, we adopt a tight-
binding model description of a simple cubic lattice with four
orbitals s, px, py, pz at each lattice point. Possible nearest-
neighbor hoppings are shown in Fig. 2(a) with their hopping
amplitudes (see Ref. [26] for details). Figure 2(b) shows the
band structure of this system. The three doubly-degenerate
lower bands have p-character whereas the topmost doubly-
degenerate band (with Γ point band edge at 0.3 eV) has s-
character. Figure 2(c) shows the orbital character of the states
at E = −0.8 eV in the kz = 0 plane. Note that the in-
ner(outer) band has radial(tangential) character orbital texture

FIG. 2. (a) A tight-binding model on a simple cubic lattice with s,
px, py, and pz orbitals at each site. The nearest-neighbor hopping
amplitude between s orbitals is ts, and that between p orbitals via
σ(π) bonding is tpσ(π). An inter-orbital hopping amplitude from px,
py, or pz orbital to s orbital is γsp. (b) Band structure obtained from
the tight-binding model. The color represents the correlation ⟨L · S⟩
for each eigenstate. (c) Wavefunction character of the eigenstates at
E = −0.8 eV with kz = 0.

as assumed in Fig. 1(a). We emphasize that the orbital tex-
ture arises from the sp hopping γsp, which mediates the k-
dependent hybridization between px, py , and pz orbitals in
eigenstates. When γsp = 0, the orbital texture disappears.
Thus γsp may be regarded as a measure of the orbital tex-
ture strength. Numerical values of the Hamiltonian parame-
ters are (unless mentioned otherwise) as follows; Es = 3.2,
Epx = Epy = Epz = −0.5 for on-site energies, ts = 0.5,
tpσ = 0.5, tpπ = 0.2, γsp = 0.5 for nearest-neighbor hopping
amplitudes, and αso = 0.1 for SOC, all in unit of eV.

To assess the role of the orbital texture for OHE and SHE
rigorously, one should go beyond the crude evaluation of the
interband superposition given above, which captures only the
initial evolution of an eigenstate toward its nonequilibrium
steady state. For this, we use the Kubo formula,

σOH(SH) =
e

h̄

∑

n̸=m

∫

d3k

(2π)3
(fmk − fnk)Ω

Xz

nmk
, (2a)

ΩXz

nmk
= h̄2Im

[

⟨unk| jXz
y |umk⟩ ⟨umk| vx |unk⟩

(Enk − Emk + iη)2

]

, (2b)

to calculate OHC (σOH) and SHC (σSH) for the tight-
binding model with the orbital texture. Here jXz

y =
(vyXz +Xzvy) /2 is the conventional orbital(spin) current
operator with Xz = Lz(Sz), vx(y) is the velocity operator
along the x(y) direction, and fnk is the Fermi-Dirac distri-
bution function. In view of the illustration in Fig. 1, ΩXz

nmk

amounts to the contribution to σOH(SH) from the interband su-
perposition between the bands n and m. Figures 3(a) and 3(b)
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Thus SOC generates SHE as a concomitant effect of OHE.
The sign of the spin Hall conductivity (SHC) is the same or
opposite to that of the orbital Hall conductivity (OHC) de-
pending on whether the correlation is positive or negative (that
is, S is parallel or antiparallel to L) [Fig. 1(d)].

The orbital texture assumed in Fig. 1(a) occurs even in very
trivial systems. To demonstrate this point, we adopt a tight-
binding model description of a simple cubic lattice with four
orbitals s, px, py, pz at each lattice point. Possible nearest-
neighbor hoppings are shown in Fig. 2(a) with their hopping
amplitudes (see Ref. [26] for details). Figure 2(b) shows the
band structure of this system. The three doubly-degenerate
lower bands have p-character whereas the topmost doubly-
degenerate band (with Γ point band edge at 0.3 eV) has s-
character. Figure 2(c) shows the orbital character of the states
at E = −0.8 eV in the kz = 0 plane. Note that the in-
ner(outer) band has radial(tangential) character orbital texture

FIG. 2. (a) A tight-binding model on a simple cubic lattice with s,
px, py, and pz orbitals at each site. The nearest-neighbor hopping
amplitude between s orbitals is ts, and that between p orbitals via
σ(π) bonding is tpσ(π). An inter-orbital hopping amplitude from px,
py, or pz orbital to s orbital is γsp. (b) Band structure obtained from
the tight-binding model. The color represents the correlation ⟨L · S⟩
for each eigenstate. (c) Wavefunction character of the eigenstates at
E = −0.8 eV with kz = 0.

as assumed in Fig. 1(a). We emphasize that the orbital tex-
ture arises from the sp hopping γsp, which mediates the k-
dependent hybridization between px, py , and pz orbitals in
eigenstates. When γsp = 0, the orbital texture disappears.
Thus γsp may be regarded as a measure of the orbital tex-
ture strength. Numerical values of the Hamiltonian parame-
ters are (unless mentioned otherwise) as follows; Es = 3.2,
Epx = Epy = Epz = −0.5 for on-site energies, ts = 0.5,
tpσ = 0.5, tpπ = 0.2, γsp = 0.5 for nearest-neighbor hopping
amplitudes, and αso = 0.1 for SOC, all in unit of eV.

To assess the role of the orbital texture for OHE and SHE
rigorously, one should go beyond the crude evaluation of the
interband superposition given above, which captures only the
initial evolution of an eigenstate toward its nonequilibrium
steady state. For this, we use the Kubo formula,
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(Enk − Emk + iη)2

]

, (2b)

to calculate OHC (σOH) and SHC (σSH) for the tight-
binding model with the orbital texture. Here jXz

y =
(vyXz +Xzvy) /2 is the conventional orbital(spin) current
operator with Xz = Lz(Sz), vx(y) is the velocity operator
along the x(y) direction, and fnk is the Fermi-Dirac distri-
bution function. In view of the illustration in Fig. 1, ΩXz

nmk

amounts to the contribution to σOH(SH) from the interband su-
perposition between the bands n and m. Figures 3(a) and 3(b)

2
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k
⟩ ∼ |pφ⟩ (|ulower

k
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the ⟨L⟩ profile in Fig. 1(c) is similar to the equilibrium ⟨L⟩
profile in orbital Rashba systems [24, 25] despite the crucial
difference that ⟨L⟩ in Fig. 1(c) is evaluated for dynamically
induced nonequilibrium interband superpositions whereas
⟨L⟩ in orbital Rashba systems for equilibrium eigenstates.

Next we restore SOC. Then due to the correlation between
L and S, nonzero ⟨L⟩ in Fig. 1(c) implies ⟨S⟩ to be nonzero.
Thus SOC generates SHE as a concomitant effect of OHE.
The sign of the spin Hall conductivity (SHC) is the same or
opposite to that of the orbital Hall conductivity (OHC) de-
pending on whether the correlation is positive or negative (that
is, S is parallel or antiparallel to L) [Fig. 1(d)].

The orbital texture assumed in Fig. 1(a) occurs even in very
trivial systems. To demonstrate this point, we adopt a tight-
binding model description of a simple cubic lattice with four
orbitals s, px, py, pz at each lattice point. Possible nearest-
neighbor hoppings are shown in Fig. 2(a) with their hopping
amplitudes (see Ref. [26] for details). Figure 2(b) shows the
band structure of this system. The three doubly-degenerate
lower bands have p-character whereas the topmost doubly-
degenerate band (with Γ point band edge at 0.3 eV) has s-
character. Figure 2(c) shows the orbital character of the states
at E = −0.8 eV in the kz = 0 plane. Note that the in-
ner(outer) band has radial(tangential) character orbital texture

FIG. 2. (a) A tight-binding model on a simple cubic lattice with s,
px, py, and pz orbitals at each site. The nearest-neighbor hopping
amplitude between s orbitals is ts, and that between p orbitals via
σ(π) bonding is tpσ(π). An inter-orbital hopping amplitude from px,
py, or pz orbital to s orbital is γsp. (b) Band structure obtained from
the tight-binding model. The color represents the correlation ⟨L · S⟩
for each eigenstate. (c) Wavefunction character of the eigenstates at
E = −0.8 eV with kz = 0.

as assumed in Fig. 1(a). We emphasize that the orbital tex-
ture arises from the sp hopping γsp, which mediates the k-
dependent hybridization between px, py , and pz orbitals in
eigenstates. When γsp = 0, the orbital texture disappears.
Thus γsp may be regarded as a measure of the orbital tex-
ture strength. Numerical values of the Hamiltonian parame-
ters are (unless mentioned otherwise) as follows; Es = 3.2,
Epx = Epy = Epz = −0.5 for on-site energies, ts = 0.5,
tpσ = 0.5, tpπ = 0.2, γsp = 0.5 for nearest-neighbor hopping
amplitudes, and αso = 0.1 for SOC, all in unit of eV.

To assess the role of the orbital texture for OHE and SHE
rigorously, one should go beyond the crude evaluation of the
interband superposition given above, which captures only the
initial evolution of an eigenstate toward its nonequilibrium
steady state. For this, we use the Kubo formula,

σOH(SH) =
e

h̄

∑

n̸=m

∫

d3k

(2π)3
(fmk − fnk)Ω

Xz

nmk
, (2a)

ΩXz

nmk
= h̄2Im

[

⟨unk| jXz
y |umk⟩ ⟨umk| vx |unk⟩

(Enk − Emk + iη)2

]

, (2b)

to calculate OHC (σOH) and SHC (σSH) for the tight-
binding model with the orbital texture. Here jXz

y =
(vyXz +Xzvy) /2 is the conventional orbital(spin) current
operator with Xz = Lz(Sz), vx(y) is the velocity operator
along the x(y) direction, and fnk is the Fermi-Dirac distri-
bution function. In view of the illustration in Fig. 1, ΩXz

nmk

amounts to the contribution to σOH(SH) from the interband su-
perposition between the bands n and m. Figures 3(a) and 3(b)
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Intrinsic Spin and Orbital Hall Effects from Orbital Texture

Dongwook Go,1 Daegeun Jo,1 Changyoung Kim,2 and Hyun-Woo Lee1, ∗

1Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
2Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea

We show theoretically that both intrinsic spin Hall effect (SHE) and orbital Hall effect (OHE) can arise in
centrosymmetric systems through momentum-space orbital texture, which is ubiquitous even in centrosymmet-
ric systems unlike spin texture. OHE occurs even without spin-orbit coupling (SOC) and is converted into SHE
through SOC. The resulting spin Hall conductivity is large (comparable to that of Pt) but depends on the SOC
strength in a nonmonotonic way. This mechanism is stable against orbital quenching. This work suggests a
path for an ongoing search for materials with stronger SHE. It also calls for experimental efforts to probe orbital
degrees of freedom in OHE and SHE. Possible ways for experimental detection are briefly discussed.

PACS numbers: 72.25.-b, 85.75.-d

Spin Hall effect (SHE) [1–6] is a phenomenon in which an
external electric field E generates a spin current in a transverse
direction. When the spin current is injected to a neighboring
ferromagnetic layer, it can even switch its magnetization di-
rection [7, 8]. SHE is now regarded as an indispensible tool in
spintronics to generate and detect a spin current [5, 6]. Of par-
ticular interest is intrinsic mechanisms [9–13], which do not
rely on impurity scattering. Large SHE in 5d transition metals
such as Pt is believed to be intrinsic [12–18].

Spin-orbit coupling (SOC) is a crucial element for intrinsic
SHE and has sizable value only near atomic nuclei [19], where
it can be approximated as

Hso =
2αso

h̄2 S · L. (1)

Here, L denotes the orbital angular momentum near nuclei.
Since the spin S couples to other degrees of freedom only
through Eq. (1) in non-magnets, L is expected to play im-
portant roles for SHE. Although an orbital degree of free-
dom is taken into account in equilibrium band structure cal-
culations, dynamical roles of L are commonly ignored in
literature. Only for a limited class of systems, it was ar-
gued [12, 13, 20, 21] that an Aharonov-Bohm phase generated
by orbitals is responsible for SHE and that SHE is closely re-
lated to orbital Hall effect (OHE). Here, OHE refers to an E-
induced transverse flow of L [22]. Even for these materials,
however, there is no experiment that probes roles of L as far
as we are aware of. It is partly due to the expectation that L
cannot play any important roles due to orbital quenching [23]
in solids.

For centrosymmetric systems with momentum-space or-
bital texture, we demonstrate that E generates nonzero L

(even when L is quenched in equilibrium), which leads to
intrinsic SHE and OHE since the generated L is odd in the
crystal momentum k. This mechanism provides not only an
alternative theoretical picture to understand SHE and OHE in
Refs. [12, 13, 20] but also implies that many other systems
may exhibit SHE and OHE since the orbital texture is ubiq-
uitous in multi-orbital systems. Specifically we demonstrate
two points: (i) even when SOC is absent and L is completely
quenched in equilibrium, the orbital texture generates OHE

FIG. 1. (a,b) Illustration of intrinsic OHE from orbital texture in cen-
trosymmetric systems. SOC is ignored for simplicity. (a) Schematic
band structure with plots of wavefunction character at each band.
Here, ky = kz = 0. (b) When an electron in the lower band is
pushed from k to k + δk by an external electric field E ∥ +x̂,
positive(negative) ⟨Lz⟩ is induced for the non-equilibrium state with
ky > 0 (ky < 0). (c) In three-dimensional k-space, ⟨L⟩ is induced
into the direction of E × k. This leads to finite ⟨Lzvy⟩, OHE. (d)
When SOC is taken into account, SHE occurs in the same or oppo-
site direction of OHE depending on whether the correlation ⟨L · S⟩
is positive or negative.

universally. (ii) When SOC is sizable, OHE is efficiently con-
verted into SHE. Thus OHE is more fundamental than SHE in
this mechanism. Interestingly we find that stronger SOC does
not necessarily imply enhanced SHE. This result is relevant
for ongoing search for materials with strong SHE.

We begin with an illustration of the point (i) for a p-orbital
system. We assume αso = 0 since SOC is not essential for
(i). We also assume that all orbital degeneracy is lifted and
the expectation value of L is suppressed to zero for all eigen-
states. Nevertheless, the orbital texture can be present; the
orbital character may vary with k and from bands to bands.
For concreteness, we assume that for k = |k|(cosφ, sinφ, 0)
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Figure 1 |ARPES energy–momentum intensity plots at the 0 point for s and p photon polarizations. a, The experimental configuration, where the sample
frame is shown in red and the laboratory frame (which contains the electron detector) in blue. The sample axes can be rotated through the angle ✓ relative
to the laboratory frame, though the normals of the sample and laboratory frames always stay aligned. The incident photon beam makes an angle of ⇠7�

relative to the laboratory (and sample) planes and has varying polarizations ranging from full s (E field parallel to the sample plane) to full p (E field in the
orange kx–kz plane). b,c, ARPES cuts along the 0–K direction of Bi2Se3 taken with s (b) and p (c) polarization, with the sample 0–K axis lying in the kx

laboratory frame direction. Colour scale applies to b,c.

incident photons come at a glancing angle ⇠7 � to the sample plane
and can have either p polarization (photon electric field vector,
drawn with yellow arrow, in the orange-coloured scattering plane)
or s polarization (E field perpendicular to the scattering plane).
These possibilities are illustrated in Fig. 1a. In both configurations,
only the electron analyser is rotated to collect data, so that the
relative angles between the sample coordinate axes and the photon
beam coordinates (polarization and Poynting or incident vector)
remain unchanged. Detailed information about the ARPES setup
and data taking can be found in Supplementary Information.

The E field of p polarization points almost exclusively out of
plane. Therefore, it leads to a strong ARPES cross-section for the
out-of-plane pz orbitals and a weak cross-section for the in-plane
orbitals. In contrast, s-polarization data have a strong cross-section
for the in-plane orbitals and a weak cross-section for the out-of-
plane orbitals. This is observed in the energy–momentum intensity
plot along the 0–K cut of Bi2Se3, taken with s and p polarization
respectively (Fig. 1b,c). The ARPES intensity of the Dirac cone is
⇠3 times stronger using p polarization than using s polarization,
confirming that the Dirac states have a large pz component and
non-negligible contribution from in-plane states. In addition to the
surface states that make up the Dirac cone, the bulk valence band
can also be observed in the interior of theDirac cone below theDirac
point using p polarization. This indicates that the bulk valence band
has amajor pz component, consistent with refs 16,17.

Figure 2 a shows constant energy surfaces of Bi2Se3 for different
energies relative to the Dirac point (left to right) and for both
polarizations (s and p as marked on the right of the panel). The
bottom row shows data from p polarization, mainly made up of the
pz states. These are seen to be almost uniform around the constant
energy surfaces for all energy cuts. In contrast, the data taken with
s polarization have drastic intensity changes around the constant
energy surfaces. In particular, the data above the Dirac point (left
two columns) both show vanishing spectral weight parallel to the
electric field, whereas the data below the Dirac point (right two
columns) show suppressed spectral weight normal to the electric
field. To determine whether this weight distribution is related to
a specific crystalline orientation (sample frame) or relative to the
photon field (laboratory frame), we rotated the sample crystalline
axes in multiple 5� steps of the angle � (Fig. 1a) about the sample
normal while keeping all other experimental parameters the same.
These data, shown in Fig. 2b from left to right columns, are almost
identical with sample rotation, illustrating that this pattern is not

due to any particular arrangement relative to the sixfold crystalline
axes but is more general.

We now use a symmetry analysis across various mirror planes
to disentangle the symmetries of the various in-plane states that
contribute, requiring us to only consider s-polarized photons. A
helpful mirror plane to consider is the one defined by the sample
surface normal and the photon Poynting vector (orange plane in
Fig. 1a, in the kx direction in the laboratory frame, and shown as
the orange lines in Fig. 2c). Relative to this kx–kz laboratory-based
mirror plane, the s-polarized photon field E has an odd parity,
whereas it has an even parity relative to the green ky–kz mirror plane.
The free-electron final state | fi is even with respect to both these
mirror planes. As labelled in Fig. 2c, this constrains the initial state
wavefunctions | ii to have a certain parity with respect to these
mirror planes, so that the ARPES intensity will vanish in the correct
symmetry locations if the overall parity of thematrix element is odd.
Above the Dirac point, the in-plane states along the green0–ky line,
and thus the initial state | ii, must have odd symmetry with respect
to this mirror plane (Fig. 2c, top) for a zero matrix element. Simi-
larly, for the in-plane states below theDirac point, there is vanishing
weight along the orange 0–kx line and so the initial state is even
with respect to this mirror plane (Fig. 2c, bottom). Along kx above
the Dirac point and along ky below the Dirac point, there is strong
spectral weight, the matrix elements are overall even, and the initial
state parities can similarly be determined. Note that neither of these
mirror planes is necessarily along any of the high symmetry crys-
talline directions of the sample, as is seen from the data of Fig. 2b.

We could deduce from Fig. 2c the in-plane p orbitals | ii that
are consistent with the symmetry constraints discussed above, that
is, odd with respect to the orange and greenmirror planes above the
Dirac point and even with respect to these planes below the Dirac
point. These orbital wavefunctions are tangential to the constant
energy surface above the Dirac point and then switch to being
radial to the constant energy surface below the Dirac point. This
is shown more clearly in Fig. 3 as the orange orbitals, showing
the out-of-plane pz components of the wavefunction in green. It
is quite evident from symmetry analysis that linear polarization
cleanly disentangles ARPES intensity contributions from different p
orbitals (see Supplementary Information for more details), whereas
the circular polarization used in previous experiments19–22 focused
on the spin chirality or the ‘handedness’ of thewavefunctions.

The measured orbital texture is captured in our first-principles
calculations on the basis of the local density approximation.

500 NATURE PHYSICS | VOL 9 | AUGUST 2013 | www.nature.com/naturephysics
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Spin-orbital Texture in Topological Insulators

Haijun Zhang1, Chao-Xing Liu2 & Shou-Cheng Zhang1
1 Department of Physics, McCullough Building, Stanford University, Stanford, CA 94305-4045

2 Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802-6300
(Dated: May 5, 2014)

Relativistic spin-orbit coupling plays an essential role in the field of topological in-
sulators and quantum spintronics. It gives rise to the topological non-trivial band
structure and enables electric manipulation of the spin degree of freedom. Because of
the spin-orbit coupling, rich spin-orbital coupled textures can exist both in momentum
and in real space. For three dimensional topological insulators in the Bi2Se3 family,
topological surface states with pz orbitals have a left-handed spin texture for the upper
Dirac cone and a right-handed spin texture for the lower Dirac cone. In this work, we
predict a new form of the spin-orbital texture associated with the px and py orbitals.
For the upper Dirac cone, a left-handed (right-handed) spin texture is coupled to the
“radial” (“tangential”) orbital texture, whereas for the lower Dirac cone, the coupling
of spin and orbital textures is the exact opposite. The “tangential” (“radial”) orbital
texture is dominant for the upper (lower) Dirac cone, leading to the right-handed spin
texture for the in-plane orbitals of both the upper and lower Dirac cones. A spin-
resovled and photon polarized angle-resolved photoemission spectroscopy experiment
is proposed to observe this novel spin-orbital texture.

PACS numbers: 71.20.-b,73.43.-f,73.20.-r

I. INTRODUCTION

Three-dimensional topological insulators (TIs) are new
states of quantum matter with helical gapless surface
states consisting of odd number of Dirac cones inside
the bulk band gap protected by time-reversal symmetry
(TRS).1–4 The underlying physical origin of the topo-
logical property of TIs is the strong spin-orbit coupling
(SOC), which plays a similar role as the Lorentz force in
the Quantum Hall state. Due to the SOC interaction, the
spin and momentum are locked to each other, forming a
spin texture in the momentum space for the surface states
of TIs5–7. The spin texture has been directly observed
in the spin-resolved angle-resolved photon emission spec-
troscopy (spin-resolved ARPES)8–12. The spin texture
gives rise to a non-trivial Berry phase for the topological
surface states and suppresses the backscatterings under
TRS, leading to possible device applications in spintron-
ics.

Besides the spin texture, it has also been shown re-
cently that the atomic p orbitals of the Bi2Se3 family of
topological insulators form a pattern in the momentum
space, dubbed as the orbital texture, for the topological
surface states.13,14 In this work, we predict a coupled
spin-orbital texture for the topological surface states.
Based on both the effective k· p theory and ab-initio cal-
culations, we find, besides the usual locking between the
electron spin and the crystal momentum, the spin tex-
ture is also locked to the atomic orbital texture, which is
dubbed as “spin-orbital texture”. We show that pz or-
bitals have left-handed spin texture for the upper Dirac
cone and right-handed spin texture for the lower Dirac
cone, sharing the same feature as the total spin texture
of the surface states. In contrast, the in-plane orbitals

a

kx

kyb

kx

ky

FIG. 1. (color online) a, b, The tangential orbital texture
with the right-handed helical spin texture (a) and the radial
orbital texture with the left-handed helical spin texture (b)
for the upper Dirac cone.

(px and py orbitals) reveal more intriguing features: for
the upper Dirac cone of surface states, a “radial” orbital
texture is coupled to a left-handed spin texture and a
“tangential” orbital texture is coupled to a right-handed
spin texture. For the lower Dirac cone, the coupling be-
tween spin and orbital textures is exactly opposite. An
electron spin-resolved and photon polarized ARPES ex-
periment is proposed to observe this novel spin-orbital
texture of the surface states of TIs.

II. EFFECTIVE THEORY OF THE
SPIN-ORBITAL TEXTURE

The surface states of TIs are described by the Dirac
type of effective Hamiltonian5,15

Hsurf(kx, ky) = !vf (σ
xky − σykx) , (1)

with the Fermi velocity vf and Pauli matrix σ. The
salient feature of this effective Hamiltonian is the “spin-
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Fig. 2. Theoretical band structure and ARPES measurements. (A) DFT band structure calculation (using a 
HSE exchange functional) including SOC, showing the wide band gap and a significant band splitting in the 
valence band (dashed line). (B) ARPES band dispersion through the Brillouin zone. The band maximum at K 
and the valence band splitting are in close agreement with the theoretical prediction (overlay). The zero of 
energy ( FE ) is aligned to the Fermi level of the spectrometer. (C) Close-up of ARPES showing a valence band 
maximum at the K-point with large SOC-induced splitting in a wide momentum range. (D) Constant energy 
surfaces from ARPES at various binding energies. The cut at low binding energies is taken at the topmost 
intensity corresponding to the valence band maximum. The maps are consistent with the six-fold degeneracy 
of the K- and K’-points of the hexagonal lattice.  
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Fig. 1. Bismuthene on SiC(0001) structural model. (A) Sketch of a bismuthene layer placed on the 
threefold-symmetric SiC(0001) substrate in ( 3 3× ) R 30D  commensurate registry. (B) Topographic STM 
overview map showing that bismuthene fully covers the substrate. The flakes are of ~25 nm extent, limited by 
domain boundaries. (C) Substrate step height profile, taken along the red line in (B). The step heights 
correspond to SiC steps. (D) The honeycomb pattern is seen on smaller scanframes. (E) Close-up STM images 
for occupied and empty states (left and right panel, respectively). They confirm the formation of Bi 
honeycombs. 
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confine ourselves to the (As,Sb)/SiC systems, assuming
planar layers. Another point to note is that the SiC sub-
strate gap is 3.2 eV and, thus, large enough to accom-
modate, at least in principle, the large topological gaps
(i.e. in bismuthene (0.8 eV), and in our above (Sb/As)
systems with gaps of order (0.3, 0.2 eV)), where EF lies
within this topological gap.

In summary of this (Sb, As)/SiC comparison with the
Bi/SiC system, we can already detect a unifying aspect:
it is the reduced atomic SOC strength of Sb and As com-
pared to Bi, which is responsible for the only qualitative
di↵erence of the low-energy band structure and, in par-
ticular, the gap results, i.e. the size of the topological
gap and the Rashba valence-band splitting shrink. This
is in accordance with our paradigm, in that it is the layer-
substrate bonding, which allows for the large on-site SOC
to directly come into play, generating gaps of the order
of several hundreds meV. This central aspect will be con-
sidered next.

3. The Role of the Substrate
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FIG. 5. The projection of the electronic structure to the three
p orbitals of (a) Bi in Bi/SiC(0001); (b) C in graphene; (c)
Sb in Sb/SiC(0001) and (d) As in As/SiC(0001). The zero
energy level corresponds to the Fermi energy.

Let us start with Fig. 5, which in (a) displays the
orbital-resolved electronic structure of the DFT calcula-
tion for our prototype example Bi/SiC (0001), first with-
out inclusion of SOC. In Fig. 5, the circle size is propor-

tional to the relative weight of the orbital. In this mono-
layer/substrate system, the linear bands which cross at
the K-point, consist mainly of px and py orbitals. In con-
trast, in Fig. 5(b), which plots the bands and the orbital
projections for graphene, the low-energy physics is due
to just one orbital, i.e. the pz-orbital. Obviously, the
electronic structure of the quasi-2D heavy-atom system,
which comprises s- and p-orbitals of e.g. the Bi-atoms, is
substantially modified by the presence of the substrate:
as a free standing layer, Bi-atoms would form sp2 bands,
leading to the �-bands of bismuthene, while the “dan-
gling” pz-orbitals point out of the plane and give rise to
the ⇡-bands. In this case (see Fig. 5(b)), the low-energy
states around EFermi have pz orbital character.

As known, from the Kane-Mele work on graphene,7

this single pz-band in the honeycomb lattice gives rise
to a tiny band structure SOC at the level of higher-
order perturbation theory (Fig. 6). However, not surpris-
ingly, it is precisely this ”dangling-band” pz-orbital band,
which is most substantially a↵ected by the presence of the
substrate: its bonding to the honeycomb layer acts like
an electric gate field E imposed on the Bi(As,Sb)-orbital
manifold and shifts the pz-states away from the low-
energy sector of the combined layer/substrate system.
This is summarized in a type of Gedankenexperiment in
Fig. 6, where a perpendicular electric field is assumed to
act on the honeycomb layer (see also Ref. 25): the gen-
eral idea here is, that the e↵ect of the honeycomb-layer
bonding to the substrate can be e↵ectively absorbed into
an electric field ~E, applied perpendicular to the layer.
The explicit construction is presented in App. A, where
the coupling strength �E along the z-direction can di-
rectly be determined from a tight-binding fit to the DFT
results. Here, it is used to develop a simple-as-possible
insight into the role of the substrate.

For the Kane-Mele scenario in Fig. 6, with only the
⇡-band, the matrix element of the intrinsic SOC HI ob-
viously vanishes at the same site, i.e. for i = j, if only
the pz-orbital is involved [the well-known forms of HI for
the intrinsic and HR for the Rashba SOC, are defined
in detail in Eqs. (7,8) in the App. D]. The substrate, or
the electric field E, then projects the ⇡-band to high en-
ergy. This is visible in Fig. 5(a) for Bi/SiC and can be
shown similarly for the new As/SiC system, where the
dominant low-energy states are now due to As-px and
As-py orbitals. The L · S SOC, where L and S denote
the orbital and spin angular momenta, then gives rise to
the large atomic on-site SOC (i.e. �SOCH��

SOC
in Eq. (1)),

due to the Lz�z-term, which connects px with py orbitals
(Sec. III below). This crucial e↵ect of the substrate es-
tablishes the ”high-temperature” QSH paradigm, in that
the honeycomb layer (Bi,As,Sb etc.) substrate (e.g. SiC)
combination now displays a systematic scaling in its band
gap with the large magnitude of the atomic SOC of the
heavy elements.

The phenomenology of modifying the low-energy be-
havior to the dominance of px- and py-orbitals is of-
ten termed as “orbital filtering”, or, “orbital engineer-
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The orbital-Hall effect (OHE), similarly to the
spin-Hall effect (SHE), refers to the creation of
a transverse flow of orbital angular momentum
that is induced by a longitudinally applied elec-
tric field [1]. For systems in which the spin-orbit
coupling (SOC) is sizeable, the orbital and spin
angular momentum degrees of freedom are cou-
pled, and an interrelationship between charge,
spin and orbital angular momentum excitations
is naturally established. The OHE has been ex-
plored mostly in metallic systems, where it can
be quite strong [2–5]. However, several of its fea-
tures remain unexplored in two-dimensional (2D)
materials. Here, we investigate the role of or-
bital textures for the OHE displayed by multi-
orbital 2D materials. We predict the appearance
of rather large orbital Hall effect in these systems
both in their metallic and insulating phases. In
some cases, the orbital Hall currents are larger
than the spin Hall ones, and their use as informa-
tion carriers widens the development possibilities
of novel spin-orbitronic devices.

In our analyses, we consider a minimal tight-binding
model Hamiltonian, which involves only two atomic or-
bitals (px and py) per atom in a honeycomb lattice [6, 7]:

H =
X

hiji

X

µ⌫s

t
µ⌫
ij p

†
iµspj⌫s+

X

iµs

✏ip
†
iµspiµs+

X

iµs

hz
µsp

†
iµspiµs,

(1)
where i and j denote the honeycomb lattice sites posi-
tioned at ~Ri and ~Rj , respectively. The symbol hiji indi-
cates that the sum is restricted to the nearest neighbour
(n.n) sites only. The operator p

†
iµs creates an electron of

spin s in the atomic orbitals pµ = p± = 1p
2
(px ± ipy)

centred at ~Ri. Here, s = ", # labels the two electronic
spin states, and ✏i is the atomic energy at site i, which
may symbolise a staggered on-site potential that takes
values ✏i = ±VAB , when site i belongs to the A and B
sub-lattices of the honeycomb arrangement, respectively.
The transfer integrals tµ⌫ij between the pµ orbitals centred
on n.n atoms are parametrised according to the standard
Slater-Koster tight-binding formalism [8]. They depend
on the direction cosines of the n.n. interatomic directions,
and may be approximately expressed as linear combina-
tions of two other integrals (Vpp� and Vpp⇡) involving the

p� and p⇡ orbitals, where � and ⇡ refer to the usual com-
ponents of the angular momentum around these axes.

Since our model does not include the atomic orbital pz,
it is restricted to a sector of the ` = 1 angular momentum
vector space spanned only by the eigenstates of `z

��p±
↵

associated with m` = ±1, respectively. Within this sec-
tor it is useful to introduce a pseudo angular momentum
SU(2)-algebra where the Pauli matrices act on

��p±
↵
. In

this case, there is a one-to-one correspondence between
the representations of the Cartesian components of the
orbital angular momentum operators in this basis and the
usual Pauli matrices, and `

z is not conserved. Using this
approach, the third term may describe either an intrinsic
atomic SOC given by hz

µs = �I`
z
µµ�

z
ss, or an exchange

coupling in a spinless system, where hz
µs = �ex`

z
µµ�

0
ss.

Figure 1: (a) Band structure calculations along some symme-
try lines in the 2D BZ for Vpp⇡ = 0, Vpp� =1 eV, and �I = 0.
The blue line represents the results for VAB = 0.0, and the
red line for VAB = 0.8Vpp�. (b) Schematic representation of
the OHE in our 2D-model material. (c) Orbital Hall con-
ductivities calculated for the same sets of parameters. The
insets show the in-plane contribution to the orbital angular
momentum textures calculated in the neighbourhoods the �
(left inset) and K (right inset) symmetry points of the 2D
Brillouin zone, for VAB = 0.0. The left and right inset tex-
tures are associated with the lower flat and dispersive bands,
respectively.
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may symbolise a staggered on-site potential that takes
values ✏i = ±VAB , when site i belongs to the A and B
sub-lattices of the honeycomb arrangement, respectively.
The transfer integrals tµ⌫ij between the pµ orbitals centred
on n.n atoms are parametrised according to the standard
Slater-Koster tight-binding formalism [8]. They depend
on the direction cosines of the n.n. interatomic directions,
and may be approximately expressed as linear combina-
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Figure 1: (a) Schematic representation of the OHE in our 2D-
model material. (b) Band structure calculations along some
symmetry lines in the 2D BZ for Vpp⇡ = 0, Vpp� =1 eV, and
�I = 0. The blue line represents the results for VAB = 0.0,
and the red line for VAB = 0.8Vpp�. (c) Orbital Hall con-
ductivities calculated for the same sets of parameters. The
insets show the in-plane contribution to the orbital angular
momentum textures calculated in the neighbourhoods the �
(left inset) and K (right inset) symmetry points of the 2D
Brillouin zone, for VAB = 0.0. The left and right inset tex-
tures are associated with the lower flat and dispersive bands,
respectively.
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Figure 1: (a) Schematic representation of the OHE in our 2D-
model material. (b) Band structure calculations along some
symmetry lines in the 2D BZ for Vpp⇡ = 0, Vpp� =1 eV, and
�I = 0. The blue line represents the results for VAB = 0.0,
and the red line for VAB = 0.8Vpp�. (c) Orbital Hall con-
ductivities calculated for the same sets of parameters. The
insets show the in-plane contribution to the orbital angular
momentum textures calculated in the neighbourhoods the �
(left inset) and K (right inset) symmetry points of the 2D
Brillouin zone, for VAB = 0.0. The left and right inset tex-
tures are associated with the lower flat and dispersive bands,
respectively.
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linear energy dispersion relation, which are formally
described by a massless Dirac equation, the lateral gaps
in the vicinity of the Γ point encompass approximately
parabolic bands that represent Schrödinger-like electrons.
Panels 2(d) and 2(e) illustrate the impact of disorder on

the quantized spin-Hall conductivity plateaus associated
with the topological gaps. The robustness of the central gap
assures that the spin-Hall conductivity is fairly insensitive
to weak Anderson disorder. In contrast, the size of the
lateral gaps decreases more rapidly as localized states
produced by the disorder begin to populate the inner region
of this gap, and forW ∼ 1.6 eV the quantum spin-Hall state
is virtually destroyed. This class of materials thus exhibit
two distinct regimes of disorder, which may be explored in
a single sample of elements whose central and lateral gaps
are accessible by gating.
We have also investigated how the presence of vacancies

would affect the topological states of these systems. Our
results show that they are fairly robust to this type of
inhomogeneities. The plateaus in σsxy remain nearly
unchanged for concentrations up to 1% of vacancies,
although it is noteworthy that in the neighborhood of
E¼ 0 it deviates from the quantized value e=2π, due to the
presence of impurity states in this energy range [62].
Further results and analyses of the influences of
Anderson and vacancy disorders, as well as the strength
of the RSOC on the topological properties of these
materials are presented in the Supplemental Material [54].
In order to examine the interplay between spin and valley

degrees of freedom, we consider an staggered on-site
potential that breaks the inversion symmetry between the
two interpenetrating triangular sublattices A and B. We
assume that ϵi ¼ þVAB when i denotes a site of sublattice
A, and ϵi ¼ −VAB when it labels a site of the sublattice B.
This can be achieved either by a suitable substrate choice
[63] or by selective functionalization [36]. To inquire into
the explicit presence and characteristics of edge states
under those conditions, we begin by examining the band
structure of a 30 nm wide zigzag nanoribbon described by
this simplified model. The results calculated for different
values of VAB are shown in the left panels of Fig. 3. We
notice that while VAB < λI the size of the central gap
reduces as VAB increases, yielding edge states with oppo-
site spin polarizations at the two inequivalent valleys. As a
result, spin and valley are locked at the band edges [28],
but the topological properties are preserved, as shown in
Fig. 3(b), which illustrates our bulk calculations for both
σsxy and σxx as functions of energy, employing the same set
of parameters. This class of materials clearly displays both
spin- and valley-Hall effects, and for other elements of
group V that exhibit a direct gap, as antimonene [17,43]; for
example, this spin-valley coupling may be explored for
opto-spintronic applications [27–29]. Panels 3(c) and 3(d)
illustrate the special case in which VAB ¼ λI . In Fig. 3(c)
we observe how the gap for one spin in this case closes in

each cone, remaining opened for the opposite spin state.
This is compatible with the fact that the central plateau in
σsxy assumes the value e=4π, while σxx displays a linear
behavior in this energy range, arising from states that are
protected against spin-independent intervalley scattering.
Figures 3(e) and 3(f) depict the case where VAB > λI . Here,
the gaps reopen after a topological phase transition. The
new state shows strong spin-valley coupling, but the edge
states disappear as illustrated in Fig. 3(e). This explains the
vanishing of the spin-Hall conductivity in the central gap,
and its quantized presence in the energy ranges of the
lateral ones.
It is also instructive to investigate whether this class of

systems can be driven into a TAI phase by sufficiently
strong disorders. We recall that for VAB ¼ 0, a large amount
of disorder simply destroys the central plateau of σsxy, but
the consequences can be quite different when sublattice
symmetry is broken. To illustrate it, let us consider the case
where VAB ¼ 0.5 eV > λI. In Fig. 4 we show results for ρ
and σsxy calculated as functions of energy both in the weak
and strong disorder regimes. In the former case, the system
is in a normal semiconductor phase, where both ρ and σsxy

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Left panels: Energy bands for a 30 nm wide zigzag
nanoribbon described by a px-py Hamiltonian on a honeycomb
lattice. Blue and red curves represent the majority and minority
spin bands, respectively. The calculations were performed with
Vppσ ¼ 1.815, Vppπ ¼ −0.315, λI ¼ 0.435, and λR ¼ 0 eV, for
different values of the staggered potential: (a) VAB ¼ 0.1,
(c) VAB ¼ 0.435, and (e) VAB ¼ 0.8 eV. Right panels: spin-Hall
conductivity (black line) and normalized longitudinal conduc-
tivity (green line) calculated as functions of energy for Vppσ ¼
1.815, Vppπ ¼ −0.315, λI ¼ 0.435, λR ¼ 0, W ¼ 0.05 eV, and
different values of the staggered potential: (b) VAB ¼ 0.1,
(d) VAB ¼ 0.435, and (f) VAB ¼ 0.8 eV.
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linear energy dispersion relation, which are formally
described by a massless Dirac equation, the lateral gaps
in the vicinity of the Γ point encompass approximately
parabolic bands that represent Schrödinger-like electrons.
Panels 2(d) and 2(e) illustrate the impact of disorder on

the quantized spin-Hall conductivity plateaus associated
with the topological gaps. The robustness of the central gap
assures that the spin-Hall conductivity is fairly insensitive
to weak Anderson disorder. In contrast, the size of the
lateral gaps decreases more rapidly as localized states
produced by the disorder begin to populate the inner region
of this gap, and forW ∼ 1.6 eV the quantum spin-Hall state
is virtually destroyed. This class of materials thus exhibit
two distinct regimes of disorder, which may be explored in
a single sample of elements whose central and lateral gaps
are accessible by gating.
We have also investigated how the presence of vacancies

would affect the topological states of these systems. Our
results show that they are fairly robust to this type of
inhomogeneities. The plateaus in σsxy remain nearly
unchanged for concentrations up to 1% of vacancies,
although it is noteworthy that in the neighborhood of
E¼ 0 it deviates from the quantized value e=2π, due to the
presence of impurity states in this energy range [62].
Further results and analyses of the influences of
Anderson and vacancy disorders, as well as the strength
of the RSOC on the topological properties of these
materials are presented in the Supplemental Material [54].
In order to examine the interplay between spin and valley

degrees of freedom, we consider an staggered on-site
potential that breaks the inversion symmetry between the
two interpenetrating triangular sublattices A and B. We
assume that ϵi ¼ þVAB when i denotes a site of sublattice
A, and ϵi ¼ −VAB when it labels a site of the sublattice B.
This can be achieved either by a suitable substrate choice
[63] or by selective functionalization [36]. To inquire into
the explicit presence and characteristics of edge states
under those conditions, we begin by examining the band
structure of a 30 nm wide zigzag nanoribbon described by
this simplified model. The results calculated for different
values of VAB are shown in the left panels of Fig. 3. We
notice that while VAB < λI the size of the central gap
reduces as VAB increases, yielding edge states with oppo-
site spin polarizations at the two inequivalent valleys. As a
result, spin and valley are locked at the band edges [28],
but the topological properties are preserved, as shown in
Fig. 3(b), which illustrates our bulk calculations for both
σsxy and σxx as functions of energy, employing the same set
of parameters. This class of materials clearly displays both
spin- and valley-Hall effects, and for other elements of
group V that exhibit a direct gap, as antimonene [17,43]; for
example, this spin-valley coupling may be explored for
opto-spintronic applications [27–29]. Panels 3(c) and 3(d)
illustrate the special case in which VAB ¼ λI . In Fig. 3(c)
we observe how the gap for one spin in this case closes in

each cone, remaining opened for the opposite spin state.
This is compatible with the fact that the central plateau in
σsxy assumes the value e=4π, while σxx displays a linear
behavior in this energy range, arising from states that are
protected against spin-independent intervalley scattering.
Figures 3(e) and 3(f) depict the case where VAB > λI . Here,
the gaps reopen after a topological phase transition. The
new state shows strong spin-valley coupling, but the edge
states disappear as illustrated in Fig. 3(e). This explains the
vanishing of the spin-Hall conductivity in the central gap,
and its quantized presence in the energy ranges of the
lateral ones.
It is also instructive to investigate whether this class of

systems can be driven into a TAI phase by sufficiently
strong disorders. We recall that for VAB ¼ 0, a large amount
of disorder simply destroys the central plateau of σsxy, but
the consequences can be quite different when sublattice
symmetry is broken. To illustrate it, let us consider the case
where VAB ¼ 0.5 eV > λI. In Fig. 4 we show results for ρ
and σsxy calculated as functions of energy both in the weak
and strong disorder regimes. In the former case, the system
is in a normal semiconductor phase, where both ρ and σsxy
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FIG. 3. Left panels: Energy bands for a 30 nm wide zigzag
nanoribbon described by a px-py Hamiltonian on a honeycomb
lattice. Blue and red curves represent the majority and minority
spin bands, respectively. The calculations were performed with
Vppσ ¼ 1.815, Vppπ ¼ −0.315, λI ¼ 0.435, and λR ¼ 0 eV, for
different values of the staggered potential: (a) VAB ¼ 0.1,
(c) VAB ¼ 0.435, and (e) VAB ¼ 0.8 eV. Right panels: spin-Hall
conductivity (black line) and normalized longitudinal conduc-
tivity (green line) calculated as functions of energy for Vppσ ¼
1.815, Vppπ ¼ −0.315, λI ¼ 0.435, λR ¼ 0, W ¼ 0.05 eV, and
different values of the staggered potential: (b) VAB ¼ 0.1,
(d) VAB ¼ 0.435, and (f) VAB ¼ 0.8 eV.
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the explicit presence and characteristics of edge states
under those conditions, we begin by examining the band
structure of a 30 nm wide zigzag nanoribbon described by
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values of VAB are shown in the left panels of Fig. 3. We
notice that while VAB < λI the size of the central gap
reduces as VAB increases, yielding edge states with oppo-
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result, spin and valley are locked at the band edges [28],
but the topological properties are preserved, as shown in
Fig. 3(b), which illustrates our bulk calculations for both
σsxy and σxx as functions of energy, employing the same set
of parameters. This class of materials clearly displays both
spin- and valley-Hall effects, and for other elements of
group V that exhibit a direct gap, as antimonene [17,43]; for
example, this spin-valley coupling may be explored for
opto-spintronic applications [27–29]. Panels 3(c) and 3(d)
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This is compatible with the fact that the central plateau in
σsxy assumes the value e=4π, while σxx displays a linear
behavior in this energy range, arising from states that are
protected against spin-independent intervalley scattering.
Figures 3(e) and 3(f) depict the case where VAB > λI . Here,
the gaps reopen after a topological phase transition. The
new state shows strong spin-valley coupling, but the edge
states disappear as illustrated in Fig. 3(e). This explains the
vanishing of the spin-Hall conductivity in the central gap,
and its quantized presence in the energy ranges of the
lateral ones.
It is also instructive to investigate whether this class of

systems can be driven into a TAI phase by sufficiently
strong disorders. We recall that for VAB ¼ 0, a large amount
of disorder simply destroys the central plateau of σsxy, but
the consequences can be quite different when sublattice
symmetry is broken. To illustrate it, let us consider the case
where VAB ¼ 0.5 eV > λI. In Fig. 4 we show results for ρ
and σsxy calculated as functions of energy both in the weak
and strong disorder regimes. In the former case, the system
is in a normal semiconductor phase, where both ρ and σsxy
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FIG. 3. Left panels: Energy bands for a 30 nm wide zigzag
nanoribbon described by a px-py Hamiltonian on a honeycomb
lattice. Blue and red curves represent the majority and minority
spin bands, respectively. The calculations were performed with
Vppσ ¼ 1.815, Vppπ ¼ −0.315, λI ¼ 0.435, and λR ¼ 0 eV, for
different values of the staggered potential: (a) VAB ¼ 0.1,
(c) VAB ¼ 0.435, and (e) VAB ¼ 0.8 eV. Right panels: spin-Hall
conductivity (black line) and normalized longitudinal conduc-
tivity (green line) calculated as functions of energy for Vppσ ¼
1.815, Vppπ ¼ −0.315, λI ¼ 0.435, λR ¼ 0, W ¼ 0.05 eV, and
different values of the staggered potential: (b) VAB ¼ 0.1,
(d) VAB ¼ 0.435, and (f) VAB ¼ 0.8 eV.

PHYSICAL REVIEW LETTERS 122, 196601 (2019)

196601-4

linear energy dispersion relation, which are formally
described by a massless Dirac equation, the lateral gaps
in the vicinity of the Γ point encompass approximately
parabolic bands that represent Schrödinger-like electrons.
Panels 2(d) and 2(e) illustrate the impact of disorder on

the quantized spin-Hall conductivity plateaus associated
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assures that the spin-Hall conductivity is fairly insensitive
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produced by the disorder begin to populate the inner region
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two distinct regimes of disorder, which may be explored in
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although it is noteworthy that in the neighborhood of
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A, and ϵi ¼ −VAB when it labels a site of the sublattice B.
This can be achieved either by a suitable substrate choice
[63] or by selective functionalization [36]. To inquire into
the explicit presence and characteristics of edge states
under those conditions, we begin by examining the band
structure of a 30 nm wide zigzag nanoribbon described by
this simplified model. The results calculated for different
values of VAB are shown in the left panels of Fig. 3. We
notice that while VAB < λI the size of the central gap
reduces as VAB increases, yielding edge states with oppo-
site spin polarizations at the two inequivalent valleys. As a
result, spin and valley are locked at the band edges [28],
but the topological properties are preserved, as shown in
Fig. 3(b), which illustrates our bulk calculations for both
σsxy and σxx as functions of energy, employing the same set
of parameters. This class of materials clearly displays both
spin- and valley-Hall effects, and for other elements of
group V that exhibit a direct gap, as antimonene [17,43]; for
example, this spin-valley coupling may be explored for
opto-spintronic applications [27–29]. Panels 3(c) and 3(d)
illustrate the special case in which VAB ¼ λI . In Fig. 3(c)
we observe how the gap for one spin in this case closes in

each cone, remaining opened for the opposite spin state.
This is compatible with the fact that the central plateau in
σsxy assumes the value e=4π, while σxx displays a linear
behavior in this energy range, arising from states that are
protected against spin-independent intervalley scattering.
Figures 3(e) and 3(f) depict the case where VAB > λI . Here,
the gaps reopen after a topological phase transition. The
new state shows strong spin-valley coupling, but the edge
states disappear as illustrated in Fig. 3(e). This explains the
vanishing of the spin-Hall conductivity in the central gap,
and its quantized presence in the energy ranges of the
lateral ones.
It is also instructive to investigate whether this class of

systems can be driven into a TAI phase by sufficiently
strong disorders. We recall that for VAB ¼ 0, a large amount
of disorder simply destroys the central plateau of σsxy, but
the consequences can be quite different when sublattice
symmetry is broken. To illustrate it, let us consider the case
where VAB ¼ 0.5 eV > λI. In Fig. 4 we show results for ρ
and σsxy calculated as functions of energy both in the weak
and strong disorder regimes. In the former case, the system
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FIG. 3. Left panels: Energy bands for a 30 nm wide zigzag
nanoribbon described by a px-py Hamiltonian on a honeycomb
lattice. Blue and red curves represent the majority and minority
spin bands, respectively. The calculations were performed with
Vppσ ¼ 1.815, Vppπ ¼ −0.315, λI ¼ 0.435, and λR ¼ 0 eV, for
different values of the staggered potential: (a) VAB ¼ 0.1,
(c) VAB ¼ 0.435, and (e) VAB ¼ 0.8 eV. Right panels: spin-Hall
conductivity (black line) and normalized longitudinal conduc-
tivity (green line) calculated as functions of energy for Vppσ ¼
1.815, Vppπ ¼ −0.315, λI ¼ 0.435, λR ¼ 0, W ¼ 0.05 eV, and
different values of the staggered potential: (b) VAB ¼ 0.1,
(d) VAB ¼ 0.435, and (f) VAB ¼ 0.8 eV.
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the quantized spin-Hall conductivity plateaus associated
with the topological gaps. The robustness of the central gap
assures that the spin-Hall conductivity is fairly insensitive
to weak Anderson disorder. In contrast, the size of the
lateral gaps decreases more rapidly as localized states
produced by the disorder begin to populate the inner region
of this gap, and forW ∼ 1.6 eV the quantum spin-Hall state
is virtually destroyed. This class of materials thus exhibit
two distinct regimes of disorder, which may be explored in
a single sample of elements whose central and lateral gaps
are accessible by gating.
We have also investigated how the presence of vacancies

would affect the topological states of these systems. Our
results show that they are fairly robust to this type of
inhomogeneities. The plateaus in σsxy remain nearly
unchanged for concentrations up to 1% of vacancies,
although it is noteworthy that in the neighborhood of
E¼ 0 it deviates from the quantized value e=2π, due to the
presence of impurity states in this energy range [62].
Further results and analyses of the influences of
Anderson and vacancy disorders, as well as the strength
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assume that ϵi ¼ þVAB when i denotes a site of sublattice
A, and ϵi ¼ −VAB when it labels a site of the sublattice B.
This can be achieved either by a suitable substrate choice
[63] or by selective functionalization [36]. To inquire into
the explicit presence and characteristics of edge states
under those conditions, we begin by examining the band
structure of a 30 nm wide zigzag nanoribbon described by
this simplified model. The results calculated for different
values of VAB are shown in the left panels of Fig. 3. We
notice that while VAB < λI the size of the central gap
reduces as VAB increases, yielding edge states with oppo-
site spin polarizations at the two inequivalent valleys. As a
result, spin and valley are locked at the band edges [28],
but the topological properties are preserved, as shown in
Fig. 3(b), which illustrates our bulk calculations for both
σsxy and σxx as functions of energy, employing the same set
of parameters. This class of materials clearly displays both
spin- and valley-Hall effects, and for other elements of
group V that exhibit a direct gap, as antimonene [17,43]; for
example, this spin-valley coupling may be explored for
opto-spintronic applications [27–29]. Panels 3(c) and 3(d)
illustrate the special case in which VAB ¼ λI . In Fig. 3(c)
we observe how the gap for one spin in this case closes in

each cone, remaining opened for the opposite spin state.
This is compatible with the fact that the central plateau in
σsxy assumes the value e=4π, while σxx displays a linear
behavior in this energy range, arising from states that are
protected against spin-independent intervalley scattering.
Figures 3(e) and 3(f) depict the case where VAB > λI . Here,
the gaps reopen after a topological phase transition. The
new state shows strong spin-valley coupling, but the edge
states disappear as illustrated in Fig. 3(e). This explains the
vanishing of the spin-Hall conductivity in the central gap,
and its quantized presence in the energy ranges of the
lateral ones.
It is also instructive to investigate whether this class of

systems can be driven into a TAI phase by sufficiently
strong disorders. We recall that for VAB ¼ 0, a large amount
of disorder simply destroys the central plateau of σsxy, but
the consequences can be quite different when sublattice
symmetry is broken. To illustrate it, let us consider the case
where VAB ¼ 0.5 eV > λI. In Fig. 4 we show results for ρ
and σsxy calculated as functions of energy both in the weak
and strong disorder regimes. In the former case, the system
is in a normal semiconductor phase, where both ρ and σsxy
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FIG. 3. Left panels: Energy bands for a 30 nm wide zigzag
nanoribbon described by a px-py Hamiltonian on a honeycomb
lattice. Blue and red curves represent the majority and minority
spin bands, respectively. The calculations were performed with
Vppσ ¼ 1.815, Vppπ ¼ −0.315, λI ¼ 0.435, and λR ¼ 0 eV, for
different values of the staggered potential: (a) VAB ¼ 0.1,
(c) VAB ¼ 0.435, and (e) VAB ¼ 0.8 eV. Right panels: spin-Hall
conductivity (black line) and normalized longitudinal conduc-
tivity (green line) calculated as functions of energy for Vppσ ¼
1.815, Vppπ ¼ −0.315, λI ¼ 0.435, λR ¼ 0, W ¼ 0.05 eV, and
different values of the staggered potential: (b) VAB ¼ 0.1,
(d) VAB ¼ 0.435, and (f) VAB ¼ 0.8 eV.
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in the vicinity of the Γ point encompass approximately
parabolic bands that represent Schrödinger-like electrons.
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the quantized spin-Hall conductivity plateaus associated
with the topological gaps. The robustness of the central gap
assures that the spin-Hall conductivity is fairly insensitive
to weak Anderson disorder. In contrast, the size of the
lateral gaps decreases more rapidly as localized states
produced by the disorder begin to populate the inner region
of this gap, and forW ∼ 1.6 eV the quantum spin-Hall state
is virtually destroyed. This class of materials thus exhibit
two distinct regimes of disorder, which may be explored in
a single sample of elements whose central and lateral gaps
are accessible by gating.
We have also investigated how the presence of vacancies

would affect the topological states of these systems. Our
results show that they are fairly robust to this type of
inhomogeneities. The plateaus in σsxy remain nearly
unchanged for concentrations up to 1% of vacancies,
although it is noteworthy that in the neighborhood of
E¼ 0 it deviates from the quantized value e=2π, due to the
presence of impurity states in this energy range [62].
Further results and analyses of the influences of
Anderson and vacancy disorders, as well as the strength
of the RSOC on the topological properties of these
materials are presented in the Supplemental Material [54].
In order to examine the interplay between spin and valley

degrees of freedom, we consider an staggered on-site
potential that breaks the inversion symmetry between the
two interpenetrating triangular sublattices A and B. We
assume that ϵi ¼ þVAB when i denotes a site of sublattice
A, and ϵi ¼ −VAB when it labels a site of the sublattice B.
This can be achieved either by a suitable substrate choice
[63] or by selective functionalization [36]. To inquire into
the explicit presence and characteristics of edge states
under those conditions, we begin by examining the band
structure of a 30 nm wide zigzag nanoribbon described by
this simplified model. The results calculated for different
values of VAB are shown in the left panels of Fig. 3. We
notice that while VAB < λI the size of the central gap
reduces as VAB increases, yielding edge states with oppo-
site spin polarizations at the two inequivalent valleys. As a
result, spin and valley are locked at the band edges [28],
but the topological properties are preserved, as shown in
Fig. 3(b), which illustrates our bulk calculations for both
σsxy and σxx as functions of energy, employing the same set
of parameters. This class of materials clearly displays both
spin- and valley-Hall effects, and for other elements of
group V that exhibit a direct gap, as antimonene [17,43]; for
example, this spin-valley coupling may be explored for
opto-spintronic applications [27–29]. Panels 3(c) and 3(d)
illustrate the special case in which VAB ¼ λI . In Fig. 3(c)
we observe how the gap for one spin in this case closes in

each cone, remaining opened for the opposite spin state.
This is compatible with the fact that the central plateau in
σsxy assumes the value e=4π, while σxx displays a linear
behavior in this energy range, arising from states that are
protected against spin-independent intervalley scattering.
Figures 3(e) and 3(f) depict the case where VAB > λI . Here,
the gaps reopen after a topological phase transition. The
new state shows strong spin-valley coupling, but the edge
states disappear as illustrated in Fig. 3(e). This explains the
vanishing of the spin-Hall conductivity in the central gap,
and its quantized presence in the energy ranges of the
lateral ones.
It is also instructive to investigate whether this class of

systems can be driven into a TAI phase by sufficiently
strong disorders. We recall that for VAB ¼ 0, a large amount
of disorder simply destroys the central plateau of σsxy, but
the consequences can be quite different when sublattice
symmetry is broken. To illustrate it, let us consider the case
where VAB ¼ 0.5 eV > λI. In Fig. 4 we show results for ρ
and σsxy calculated as functions of energy both in the weak
and strong disorder regimes. In the former case, the system
is in a normal semiconductor phase, where both ρ and σsxy
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FIG. 3. Left panels: Energy bands for a 30 nm wide zigzag
nanoribbon described by a px-py Hamiltonian on a honeycomb
lattice. Blue and red curves represent the majority and minority
spin bands, respectively. The calculations were performed with
Vppσ ¼ 1.815, Vppπ ¼ −0.315, λI ¼ 0.435, and λR ¼ 0 eV, for
different values of the staggered potential: (a) VAB ¼ 0.1,
(c) VAB ¼ 0.435, and (e) VAB ¼ 0.8 eV. Right panels: spin-Hall
conductivity (black line) and normalized longitudinal conduc-
tivity (green line) calculated as functions of energy for Vppσ ¼
1.815, Vppπ ¼ −0.315, λI ¼ 0.435, λR ¼ 0, W ¼ 0.05 eV, and
different values of the staggered potential: (b) VAB ¼ 0.1,
(d) VAB ¼ 0.435, and (f) VAB ¼ 0.8 eV.
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unchanged for concentrations up to 1% of vacancies,
although it is noteworthy that in the neighborhood of
E¼ 0 it deviates from the quantized value e=2π, due to the
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assume that ϵi ¼ þVAB when i denotes a site of sublattice
A, and ϵi ¼ −VAB when it labels a site of the sublattice B.
This can be achieved either by a suitable substrate choice
[63] or by selective functionalization [36]. To inquire into
the explicit presence and characteristics of edge states
under those conditions, we begin by examining the band
structure of a 30 nm wide zigzag nanoribbon described by
this simplified model. The results calculated for different
values of VAB are shown in the left panels of Fig. 3. We
notice that while VAB < λI the size of the central gap
reduces as VAB increases, yielding edge states with oppo-
site spin polarizations at the two inequivalent valleys. As a
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but the topological properties are preserved, as shown in
Fig. 3(b), which illustrates our bulk calculations for both
σsxy and σxx as functions of energy, employing the same set
of parameters. This class of materials clearly displays both
spin- and valley-Hall effects, and for other elements of
group V that exhibit a direct gap, as antimonene [17,43]; for
example, this spin-valley coupling may be explored for
opto-spintronic applications [27–29]. Panels 3(c) and 3(d)
illustrate the special case in which VAB ¼ λI . In Fig. 3(c)
we observe how the gap for one spin in this case closes in
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This is compatible with the fact that the central plateau in
σsxy assumes the value e=4π, while σxx displays a linear
behavior in this energy range, arising from states that are
protected against spin-independent intervalley scattering.
Figures 3(e) and 3(f) depict the case where VAB > λI . Here,
the gaps reopen after a topological phase transition. The
new state shows strong spin-valley coupling, but the edge
states disappear as illustrated in Fig. 3(e). This explains the
vanishing of the spin-Hall conductivity in the central gap,
and its quantized presence in the energy ranges of the
lateral ones.
It is also instructive to investigate whether this class of

systems can be driven into a TAI phase by sufficiently
strong disorders. We recall that for VAB ¼ 0, a large amount
of disorder simply destroys the central plateau of σsxy, but
the consequences can be quite different when sublattice
symmetry is broken. To illustrate it, let us consider the case
where VAB ¼ 0.5 eV > λI. In Fig. 4 we show results for ρ
and σsxy calculated as functions of energy both in the weak
and strong disorder regimes. In the former case, the system
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FIG. 3. Left panels: Energy bands for a 30 nm wide zigzag
nanoribbon described by a px-py Hamiltonian on a honeycomb
lattice. Blue and red curves represent the majority and minority
spin bands, respectively. The calculations were performed with
Vppσ ¼ 1.815, Vppπ ¼ −0.315, λI ¼ 0.435, and λR ¼ 0 eV, for
different values of the staggered potential: (a) VAB ¼ 0.1,
(c) VAB ¼ 0.435, and (e) VAB ¼ 0.8 eV. Right panels: spin-Hall
conductivity (black line) and normalized longitudinal conduc-
tivity (green line) calculated as functions of energy for Vppσ ¼
1.815, Vppπ ¼ −0.315, λI ¼ 0.435, λR ¼ 0, W ¼ 0.05 eV, and
different values of the staggered potential: (b) VAB ¼ 0.1,
(d) VAB ¼ 0.435, and (f) VAB ¼ 0.8 eV.

PHYSICAL REVIEW LETTERS 122, 196601 (2019)

196601-4

�xx
<latexit sha1_base64="oLJRxPeQRXmuVEy27fTJX44VXLM=">AAAB8nicdVDLSgMxFM3UV62vqks3wSK4GjJt6bQbKbhxWcE+YDqUTJppQ5OZIclIy9DPcONCEbd+jTv/xvQhqOiBC4dz7uXee4KEM6UR+rByG5tb2zv53cLe/sHhUfH4pKPiVBLaJjGPZS/AinIW0bZmmtNeIikWAafdYHK98Lv3VCoWR3d6llBf4FHEQkawNpLXV2wk8CCbTueDYgnZqOa4bh0iu+o6lbpriFOuNVADOjZaogTWaA2K7/1hTFJBI004VspzUKL9DEvNCKfzQj9VNMFkgkfUMzTCgio/W548hxdGGcIwlqYiDZfq94kMC6VmIjCdAuux+u0txL88L9Vh3c9YlKSaRmS1KEw51DFc/A+HTFKi+cwQTCQzt0IyxhITbVIqmBC+PoX/k07Zdip2+bZaal6t48iDM3AOLoEDXNAEN6AF2oCAGDyAJ/BsaevRerFeV605az1zCn7AevsEVeSR8g==</latexit>

�s
xy

<latexit sha1_base64="kZdwdr2GGyoTo9rq85cwCOFWIqA=">AAAB9HicbVBNSwMxEJ31s9avqkcvwSJ4KrtV0JMUvHisYD+gXUs2zbahSXZNssVl6e/w4kERr/4Yb/4b03YP2vpg4PHeDDPzgpgzbVz321lZXVvf2CxsFbd3dvf2SweHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ub42p0iyS9yaNqS/wQLKQEWys5Hc1Gwj8oHvZUzrplcpuxZ0BLRMvJ2XIUe+Vvrr9iCSCSkM41rrjubHxM6wMI5xOit1E0xiTER7QjqUSC6r9bHb0BJ1apY/CSNmSBs3U3xMZFlqnIrCdApuhXvSm4n9eJzHhlZ8xGSeGSjJfFCYcmQhNE0B9pigxPLUEE8XsrYgMscLE2JyKNgRv8eVl0qxWvPNK9e6iXLvO4yjAMZzAGXhwCTW4hTo0gMAjPMMrvDlj58V5dz7mrStOPnMEf+B8/gBrJ5KC</latexit>

linear energy dispersion relation, which are formally
described by a massless Dirac equation, the lateral gaps
in the vicinity of the Γ point encompass approximately
parabolic bands that represent Schrödinger-like electrons.
Panels 2(d) and 2(e) illustrate the impact of disorder on

the quantized spin-Hall conductivity plateaus associated
with the topological gaps. The robustness of the central gap
assures that the spin-Hall conductivity is fairly insensitive
to weak Anderson disorder. In contrast, the size of the
lateral gaps decreases more rapidly as localized states
produced by the disorder begin to populate the inner region
of this gap, and forW ∼ 1.6 eV the quantum spin-Hall state
is virtually destroyed. This class of materials thus exhibit
two distinct regimes of disorder, which may be explored in
a single sample of elements whose central and lateral gaps
are accessible by gating.
We have also investigated how the presence of vacancies

would affect the topological states of these systems. Our
results show that they are fairly robust to this type of
inhomogeneities. The plateaus in σsxy remain nearly
unchanged for concentrations up to 1% of vacancies,
although it is noteworthy that in the neighborhood of
E¼ 0 it deviates from the quantized value e=2π, due to the
presence of impurity states in this energy range [62].
Further results and analyses of the influences of
Anderson and vacancy disorders, as well as the strength
of the RSOC on the topological properties of these
materials are presented in the Supplemental Material [54].
In order to examine the interplay between spin and valley

degrees of freedom, we consider an staggered on-site
potential that breaks the inversion symmetry between the
two interpenetrating triangular sublattices A and B. We
assume that ϵi ¼ þVAB when i denotes a site of sublattice
A, and ϵi ¼ −VAB when it labels a site of the sublattice B.
This can be achieved either by a suitable substrate choice
[63] or by selective functionalization [36]. To inquire into
the explicit presence and characteristics of edge states
under those conditions, we begin by examining the band
structure of a 30 nm wide zigzag nanoribbon described by
this simplified model. The results calculated for different
values of VAB are shown in the left panels of Fig. 3. We
notice that while VAB < λI the size of the central gap
reduces as VAB increases, yielding edge states with oppo-
site spin polarizations at the two inequivalent valleys. As a
result, spin and valley are locked at the band edges [28],
but the topological properties are preserved, as shown in
Fig. 3(b), which illustrates our bulk calculations for both
σsxy and σxx as functions of energy, employing the same set
of parameters. This class of materials clearly displays both
spin- and valley-Hall effects, and for other elements of
group V that exhibit a direct gap, as antimonene [17,43]; for
example, this spin-valley coupling may be explored for
opto-spintronic applications [27–29]. Panels 3(c) and 3(d)
illustrate the special case in which VAB ¼ λI . In Fig. 3(c)
we observe how the gap for one spin in this case closes in

each cone, remaining opened for the opposite spin state.
This is compatible with the fact that the central plateau in
σsxy assumes the value e=4π, while σxx displays a linear
behavior in this energy range, arising from states that are
protected against spin-independent intervalley scattering.
Figures 3(e) and 3(f) depict the case where VAB > λI . Here,
the gaps reopen after a topological phase transition. The
new state shows strong spin-valley coupling, but the edge
states disappear as illustrated in Fig. 3(e). This explains the
vanishing of the spin-Hall conductivity in the central gap,
and its quantized presence in the energy ranges of the
lateral ones.
It is also instructive to investigate whether this class of

systems can be driven into a TAI phase by sufficiently
strong disorders. We recall that for VAB ¼ 0, a large amount
of disorder simply destroys the central plateau of σsxy, but
the consequences can be quite different when sublattice
symmetry is broken. To illustrate it, let us consider the case
where VAB ¼ 0.5 eV > λI. In Fig. 4 we show results for ρ
and σsxy calculated as functions of energy both in the weak
and strong disorder regimes. In the former case, the system
is in a normal semiconductor phase, where both ρ and σsxy

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Left panels: Energy bands for a 30 nm wide zigzag
nanoribbon described by a px-py Hamiltonian on a honeycomb
lattice. Blue and red curves represent the majority and minority
spin bands, respectively. The calculations were performed with
Vppσ ¼ 1.815, Vppπ ¼ −0.315, λI ¼ 0.435, and λR ¼ 0 eV, for
different values of the staggered potential: (a) VAB ¼ 0.1,
(c) VAB ¼ 0.435, and (e) VAB ¼ 0.8 eV. Right panels: spin-Hall
conductivity (black line) and normalized longitudinal conduc-
tivity (green line) calculated as functions of energy for Vppσ ¼
1.815, Vppπ ¼ −0.315, λI ¼ 0.435, λR ¼ 0, W ¼ 0.05 eV, and
different values of the staggered potential: (b) VAB ¼ 0.1,
(d) VAB ¼ 0.435, and (f) VAB ¼ 0.8 eV.
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where

γ1± (k⃗) =
3∑

i=1

eik⃗·êi ± 2iθi ,

γ2± (k⃗) =
3∑

i=1

eik⃗·êi ± iθi , (24)

N (k⃗) = 3 − ηc(k⃗).

In terms of this set of new bases, H↑(k⃗) is represented as

H↑(k⃗)

=

⎡

⎢⎢⎣

m − n(k⃗) − 3
2 t∥ h(k⃗) 0

− 3
2 t∥ − m + n(k⃗) 0 h(− k⃗)

h∗(k⃗) 0 m + n(k⃗) − 1
2 t∥l

∗(k⃗)
0 h∗(− k⃗) − 1

2 t∥l(k⃗) − m − n(k⃗)

⎤

⎥⎥⎦,

(25)

where for simplicity t⊥ is set to 0; n(k⃗), l(k⃗), and h(k⃗) are
expressed as

n(k⃗) =
√

3λ

Nk

ηs(k⃗), l(k⃗) =
∑

i

eik⃗·êi ,

h(k⃗) = iλ

Nk

⎧
⎨

⎩

(
∑

i

eik⃗·êi

)2

− 3

(
∑

i

e− ik⃗·êi

)⎫
⎬

⎭ .

(26)

In the absence of SO coupling, h(k⃗) = n(k⃗) = 0, the above
matrix of H↑(k⃗) is already block diagonalized. The left-up
block represents the Hamiltonian matrix in the subspace
spanned by the bottom band |φ1(k⃗)⟩ and top band |φ4(k⃗)⟩, and
the right-bottom block represents that in the subspace spanned
by the middle two bands |φ2,3(k⃗)⟩. Apparently, the bottom and
top bands are flat as

E1,4 = ±
√( 3

2 t∥
)2 + m2, (27)

whose eigen wave functions are solved as
[
|φ1(k⃗)⟩
|φ4(k⃗)⟩

]

=
[

sin α
2 cos α

2

cos α
2 − sin α

2

] [
|A1(k⃗)⟩
|B1(k⃗)⟩

]

, (28)

where α = arctan 3t∥
2m

. As for the middle two bands, the spectra
can be easily diagonalized as

E2,3(k⃗) = ±
√

1
4 t2

∥η2
c (k⃗) + m2. (29)

The spectrum is the same as that in graphene at m = 0. The
eigen wave functions are enriched by orbital structures which
can be solved as

[
|φ2(k⃗)⟩
|φ3(k⃗)⟩

]

=
[

sin β
2 cos β

2 eiφ

cos β
2 e− iφ − sin β

2

] [
|A2(k⃗)⟩
|B2(k⃗)⟩

]

, (30)

where β(k⃗) = arctan[ t∥
2m

l(k⃗)] and φ(k⃗) = arg l(k⃗).

D. Appearance of flat bands

According to the analytical solution of spectra Eq. (16), flat
bands appear in two different situations: (i) In the absence of

SO coupling such that the bottom and top bands are flat with
the eigen energies described by Eq. (27); (ii) in the presence
of SO coupling, at λ = 3

4 t∥, the two middle bands are flat
with the energies E2,3(k⃗) = ± 3

4 t∥. In both cases, the band
flatness implies that we can construct eigenstates localized
in a single hexagon plaquette. The localized eigenstates for
the case of λ = 0 are constructed in Ref. [29], and those
for the case of λ = 3

4 t∥ were presented in Ref. [35]. Since
the kinetic energy is suppressed in the flat bands, interaction
effects are nonperturbative. Wigner crystallization [29] and
ferromagnetism [33] have been studied in the flat band at
λ = 0.

V. BAND TOPOLOGY AND BAND CROSSINGS

In this section, we study the topology of band structures
after SO coupling λ is turned on. Due to the sz conservation,
the Z2 topological class is augmented to the spin Chern class.
Without loss of generality, we only use the pattern of Chern
numbers of the sector s = ↑ to characterize the band topology,
and that of the s = ↓ sector is just with an opposite sign. The
Berry curvature for the ith band is defined as

Fi(k⃗) = ∂kx
Ay (k⃗) − ∂ky

Ax (k⃗) (31)

in which the Berry connection is defined as A⃗i(k⃗) =
− i⟨φi(k⃗)|∇⃗k|φi(k⃗)⟩. The spin Chern number of band i can
be obtained through the integral over the entire first Brillouin
zone as

Cs,i = 1
2π

∫

FBZ

dkx dky Fi(k⃗x ,k⃗y ). (32)

A. Band crossings at !, K , and K ′

We have performed the numerical integration for spin
Chern numbers (Cs,1,Cs,2,Cs,3,Cs,4) for H↑(k⃗) as presented in
Fig. 1 based on Eq. (32). The phase boundary lines L1,2,3 are
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FIG. 1. Phases with different spin Chern number patterns
(Cs1,Cs2,Cs3,Cs4) vs SO coupling strength λ and the sublattice
asymmetry parameter m. Due to the sz conservation and TR
symmetry, only those of the four s = ↑ bands are shown. Phase
boundaries L1,2,3 satisfy the level crossing conditions located at *,
K , and K ′, respectively. Their analytic expressions are λ2 − m2 =
( 3

4 t∥)2, λ = m, and λ m = ( 3
4 t∥)2, respectively. L1 and L3 intersect

at (λ,m) = ( 3
4 (

√
5 + 2), 3

4 (
√

5 − 2)) ≈ (1.54,0.36), and L2 and L3

intersect at (λ,m) = ( 3
4 , 3

4 ).
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Although the spin-orbit coupling and sublattice potential contributions are diagonal in

the new basis, Lz is not conserved in H̃0(~k) and there are elements in this matrix that

connect
��p+

↵
and

��p�
↵
. Because we are in a reduced subspace of the angular momentum

for L = 1, we can introduce a pseudo-angular-momentum SU(2)-algebra where the Pauli

matrices act on the states
��p+

↵
and

��p�
↵
:
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⇣��p�
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⌘
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The pseudo-angular-momentum texture is defined as

~ln(~k) =
⌦
lx

↵
n
(~k)x̂+

⌦
ly

↵
n
(~k)ŷ +

⌦
lz

↵
n
(~k)ẑ, (5.23)

where,

⌦
li

↵
n
(~k) =

X

�=A,B

⌦
 n(~k)

��li(�)
�� n(~k)

↵
, (5.24)

and
�� n(~k)

↵
are eigenvectors of the total Hamiltonian.

Fig. 5.2 illustrates the in-plane texture of Eq. (5.23) in the absence of SOC

and sublattice potential from the lower energy band n = 1 to the higher energy band

n = 4. For this situation, the out of plane component vanishes (
⌦
lz

↵
(~k) = 0). The

general features of the in-plane textures are not influenced by the presence of SOC and

sublattice potential, which only alters the out-of-plane component and the in-plane/out-

of-plane relative intensities. As a result, the shape of the in-plane texture is the same

in all topological phases of Fig. 5.1 (b). Now, let us discuss their general features.

First, the texture only exists because of the terms that flip pseudo-angular momentum

Because of the restricted Hilbert 
space, we define the spinors:
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FIG. S2: Orbital character of the eigenstates of the "-spin polarized Hamiltonian for the parameters: (a) �I = 0.2Vpp�,
and VAB = 0; (b) �I = 0.2Vpp�, and VAB = 0.8Vpp�; (c) �I = 1.1Vpp�, and VAB = 0.8Vpp�.

Here, we complement that analysis by showing the orbital textures of the four energy bands for each of the phases
we consider (see Figure S2). The orbital projections in panel (a) correspond to the topological phase B1, where
�I = 0.2Vpp� and VAB = 0. At first sight, it is noticeable that, as it is discussed in the main text, the in-plane orbital
texture of the first and second (third and fourth) bands are opposed which leads to the cancellation of the OHE in
the central gap of the spectrum. Focusing on the out-of-plane polarization, is also remarkable that the second and
third bands have inverted `z character and the symmetry points K and K

0 have a polarization that is contrary to
the polarization in �. Conversely, the first and fourth bands presents approximately `z = �1 and `z = 1 respectively
in the vicinity of the � point but vanishing `z character in the vicinity of K and K

0. Panel (b) displays the orbital
projections of the eigenstates corresponding to the phase A1 for �I = 0.2Vpp� and VAB = 0.8Vpp�. The main eye-
catching characteristic of this phase is the opposed out-of-plane orbital polarization in the K

0 and K points, being this
a manifestation of the orbital-valley locking produced by VAB . Similarly to phase B1, the out of plane polarization of
the two lowest energy bands are opposed to the two highest energy bands. In addition to this out-of-plane polarization,
the in-plane components of the orbital angular momentum have the same direction as in phase B1, but due to the
orbital-valley locking, their absolute value is reduced, which explains the different curve derivative of the OHE in the
phase A1 when compared with the OHE of the phase B1. Finally, panel (c) shows the orbital character of the system
when it is in phase B2, for �I = 1.1Vpp� and VAB = 0.8Vpp�. Comparing the orbital polarization of the bands in this
phase with the other two, we find that in this case the lowest energy band is almost `z = �1 polarized. As mentioned
in the main text, this marks a pronounced reduction of the in-plane texture. As before, the `z polarizations of the
lowest and highest energy bands are inverted; however, it is also noticeable the change on the `z polarization when
compared with the results of the Phase A1. This change is accompanied by a strong orbital-valley locking produced
by the combined action of the strong �I and VAB .
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The orbital-Hall effect (OHE), similarly to the
spin-Hall effect (SHE), refers to the creation of
a transverse flow of orbital angular momentum
that is induced by a longitudinally applied elec-
tric field [1]. For systems in which the spin-orbit
coupling (SOC) is sizeable, the orbital and spin
angular momentum degrees of freedom are cou-
pled, and an interrelationship between charge,
spin and orbital angular momentum excitations
is naturally established. The OHE has been ex-
plored mostly in metallic systems, where it can
be quite strong [2–5]. However, several of its fea-
tures remain unexplored in two-dimensional (2D)
materials. Here, we investigate the role of or-
bital textures for the OHE displayed by multi-
orbital 2D materials. We predict the appearance
of rather large orbital Hall effect in these systems
both in their metallic and insulating phases. In
some cases the orbital Hall currents are larger
than the spin Hall ones, and their use as informa-
tion carriers widens the development possibilities
of spin-orbitronic devices.

In our analyses, we consider a minimal tight-binding
model Hamiltonian, which involves only two atomic or-
bitals (px and py) per atom in a honeycomb lattice [6, 7]:

H =
X

hiji

X

µ⌫s

t
µ⌫
ij p

†
iµspj⌫s+

X

iµs

✏ip
†
iµspiµs+

X

iµs

hz
µsp

†
iµspiµs,

(1)
where i and j denote the honeycomb lattice sites posi-
tioned at ~Ri and ~Rj , respectively. The symbol hiji indi-
cates that the sum is restricted to the nearest neighbour
(n.n) sites only. The operator p

†
iµs creates an electron of

spin s in the atomic orbitals pµ = p± = 1p
2
(px ± ipy)

centred at ~Ri. Here, s = ", # labels the two electronic
spin states, and ✏i is the atomic energy at site i, which
may symbolise a staggered on-site potential that takes
values ✏i = ±VAB , when site i belongs to the A and B
sub-lattices of the honeycomb arrangement, respectively.
The transfer integrals tµ⌫ij between the pµ orbitals centred
on n.n atoms are parametrised according to the standard
Slater-Koster tight-binding formalism [8]. They depend
on the direction cosines of the n.n. interatomic directions,
and may be approximately expressed as linear combina-
tions of two other integrals (Vpp� and Vpp⇡) involving

the p� and p⇡ orbitals, where � and ⇡ refer to the usual
components of the angular momentum around these axes.
Since our model does not include the atomic orbital pz, it
is restricted to a sector of the ` = 1 angular momentum
vector space spanned only by the eigenstates of `z

��p±
↵

associated with m` = ±1, respectively. Within this sec-
tor it is useful to introduce a pseudo angular momentum
SU(2)-algebra where the Pauli matrices act on

��p±
↵
. In

this case, there is a one-to-one correspondence between
the representations of the Cartesian components of the
orbital angular momentum operators in this basis and the
usual Pauli matrices, and `

z is not conserved. Using this
approach, the third term may describe either an intrinsic
atomic SOC given by hz

µs = �I`
z
µµ�

z
ss, or an exchange

coupling in a spinless system, where hz
µs = �ex`

z
µµ�

0
ss.

Figure 1: (a) Schematic representation of the OHE in our 2D-
model material. (b) Band structure calculations along some
symmetry lines in the 2D BZ for Vpp⇡ = 0, Vpp� =1 eV, and
�I = 0. The blue line represents the results for VAB = 0.0,
and the red line for VAB = 0.8Vpp�. (c) Orbital Hall con-
ductivities calculated for the same sets of parameters. The
insets show the in-plane contribution to the orbital angular
momentum textures calculated in the neighbourhoods the �
(left inset) and K (right inset) symmetry points of the 2D
Brillouin zone, for VAB = 0.0. The left and right inset tex-
tures are associated with the lower flat and dispersive bands,
respectively.
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H` = H`k +HD, where H`k = �
~vF
4

⌧ (k+`+�⌧ + k�`��⌧̄ ) and HD = �

p
3~vF
2a

(`x�x + ⌧`y�y) . (S2)

where �⌧ = �x+ i⌧�y, ⌧̄ = �⌧ , `↵ (↵ = x, y) are the orbital angular momentum matrices in the corresponding Hilbert
space, k± = kx ± iky, and `± = `x ± i`y.

FIG. S5: Energy dispersions of the effective theory for the cases H`K 6= 0, HD = 0 (a)-(d), H`K = 0, HD 6= 0 (b)-(e)
and H`K 6= 0, HD 6= 0 (c)-(f). In panels (a) to (c), and (d) to (f) are displayed the cases in which the intensity of H`

are set to ⌘ = 0.3 and ⌘ = 1.0 respectively.

For consistency, we show in Figure S4 the comparison between the energy spectra our tight-biding calculations
and effective model in the vicinity of K and K

0 for ky = 0. One can see from the left column that the linear of our
effective model describes well the two inner bands for the three different phases. However, it fails to correctly describe
the energy dispersions of the two outer bands. This is corrected by considering quadratic terms in the approximation,
as can be seen in the right column of Figure S4. However, the orbital texture of the four bands near K and K

0 are
correctly described by our effective model. On the other hand, to reproduce the orbital texture in the vicinity of �,
it is necessary to perform a high-order expansion (up to 4th order).

To get an insight of the role of H` on the energy spectrum and orbital texture of our model, let us discuss the
contribution of each term. For simplicity, we consider a single spin sector. In this case, the energy spectrum of H0

consists of two degenerate Dirac cones, one for each eigenstate of the angular momentum spinor. Similarly to what
occurs in graphene, HAB opens an energy gap in the spectrum while HSOC acts as an orbital exchange interaction,
shifting upwards (downwards) the Dirac cones corresponding to the eigenvalues of `z: +1(-1). To understand how
H` modifies the spectrum ,we take the Hamiltonian H0 + ⌘H` for different values of ⌘ and three different situations:
H`K 6= 0, HD = 0, H`K = 0, HD 6= 0 and H`K 6= 0, HD 6= 0.

The energy spectrum of the three cases can be seen in Figure S5. H`K breaks the orbital degeneracy by renormalizing
the Fermi velocity of the two Dirac cones, as can be seen in the first column of Figure S5 (panels (a) and (d) with
different values of ⌘). The second column shows how HD affects the energy spectrum. HD has the same functional
form of a Dresselhaus SOC for Dirac Fermions and it is independent of k. It can be seen as an equivalent of the
Dresselhaus SOC for orbital states. As expected, it also produces a Dresselhaus splitting of the bands without opening
a gap at E = 0. If both terms are present (right column of Figure S5). , we can see the formation of a single Dirac cone
and the two outer bands (as discussed previously, to reproduce the flat-bands, it is necessary to consider high-order

http://www.if.ufrj.br


@TGRAPPOPORT SPICE WORKSHOP - 2D VAN DER WAALS SPIN SYSTEMS

OHE WITHOUT SOC

J. Sinova et al. PRL 2004

http://www.if.ufrj.br


@TGRAPPOPORT SPICE WORKSHOP - 2D VAN DER WAALS SPIN SYSTEMS

ORBITAL TEXTURES FOR INVERTED SPIN DIRECTIONS

Degenerate bands: 
In-plane orbital texture survives

Dresselhaus “SOC"
5

H` = H`k +HD, where H`k = �
~vF
4

⌧ (k+`+�⌧ + k�`��⌧̄ ) and HD = �

p
3~vF
2a

(`x�x + ⌧`y�y) . (S2)

where �⌧ = �x+ i⌧�y, ⌧̄ = �⌧ , `↵ (↵ = x, y) are the orbital angular momentum matrices in the corresponding Hilbert
space, k± = kx ± iky, and `± = `x ± i`y.

FIG. S5: Energy dispersions of the effective theory for the cases H`K 6= 0, HD = 0 (a)-(d), H`K = 0, HD 6= 0 (b)-(e)
and H`K 6= 0, HD 6= 0 (c)-(f). In panels (a) to (c), and (d) to (f) are displayed the cases in which the intensity of H`

are set to ⌘ = 0.3 and ⌘ = 1.0 respectively.

For consistency, we show in Figure S4 the comparison between the energy spectra our tight-biding calculations
and effective model in the vicinity of K and K

0 for ky = 0. One can see from the left column that the linear of our
effective model describes well the two inner bands for the three different phases. However, it fails to correctly describe
the energy dispersions of the two outer bands. This is corrected by considering quadratic terms in the approximation,
as can be seen in the right column of Figure S4. However, the orbital texture of the four bands near K and K

0 are
correctly described by our effective model. On the other hand, to reproduce the orbital texture in the vicinity of �,
it is necessary to perform a high-order expansion (up to 4th order).

To get an insight of the role of H` on the energy spectrum and orbital texture of our model, let us discuss the
contribution of each term. For simplicity, we consider a single spin sector. In this case, the energy spectrum of H0

consists of two degenerate Dirac cones, one for each eigenstate of the angular momentum spinor. Similarly to what
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where

γ1± (k⃗) =
3∑

i=1

eik⃗·êi ± 2iθi ,

γ2± (k⃗) =
3∑

i=1

eik⃗·êi ± iθi , (24)

N (k⃗) = 3 − ηc(k⃗).

In terms of this set of new bases, H↑(k⃗) is represented as

H↑(k⃗)

=

⎡

⎢⎢⎣

m − n(k⃗) − 3
2 t∥ h(k⃗) 0

− 3
2 t∥ − m + n(k⃗) 0 h(− k⃗)

h∗(k⃗) 0 m + n(k⃗) − 1
2 t∥l

∗(k⃗)
0 h∗(− k⃗) − 1

2 t∥l(k⃗) − m − n(k⃗)

⎤

⎥⎥⎦,

(25)

where for simplicity t⊥ is set to 0; n(k⃗), l(k⃗), and h(k⃗) are
expressed as

n(k⃗) =
√

3λ

Nk

ηs(k⃗), l(k⃗) =
∑

i

eik⃗·êi ,

h(k⃗) = iλ

Nk

⎧
⎨

⎩

(
∑

i

eik⃗·êi

)2

− 3

(
∑

i

e− ik⃗·êi

)⎫
⎬

⎭ .

(26)

In the absence of SO coupling, h(k⃗) = n(k⃗) = 0, the above
matrix of H↑(k⃗) is already block diagonalized. The left-up
block represents the Hamiltonian matrix in the subspace
spanned by the bottom band |φ1(k⃗)⟩ and top band |φ4(k⃗)⟩, and
the right-bottom block represents that in the subspace spanned
by the middle two bands |φ2,3(k⃗)⟩. Apparently, the bottom and
top bands are flat as

E1,4 = ±
√( 3

2 t∥
)2 + m2, (27)

whose eigen wave functions are solved as
[
|φ1(k⃗)⟩
|φ4(k⃗)⟩

]

=
[

sin α
2 cos α

2

cos α
2 − sin α

2

] [
|A1(k⃗)⟩
|B1(k⃗)⟩

]

, (28)

where α = arctan 3t∥
2m

. As for the middle two bands, the spectra
can be easily diagonalized as

E2,3(k⃗) = ±
√

1
4 t2

∥η2
c (k⃗) + m2. (29)

The spectrum is the same as that in graphene at m = 0. The
eigen wave functions are enriched by orbital structures which
can be solved as

[
|φ2(k⃗)⟩
|φ3(k⃗)⟩

]

=
[

sin β
2 cos β

2 eiφ

cos β
2 e− iφ − sin β

2

] [
|A2(k⃗)⟩
|B2(k⃗)⟩

]

, (30)

where β(k⃗) = arctan[ t∥
2m

l(k⃗)] and φ(k⃗) = arg l(k⃗).

D. Appearance of flat bands

According to the analytical solution of spectra Eq. (16), flat
bands appear in two different situations: (i) In the absence of

SO coupling such that the bottom and top bands are flat with
the eigen energies described by Eq. (27); (ii) in the presence
of SO coupling, at λ = 3

4 t∥, the two middle bands are flat
with the energies E2,3(k⃗) = ± 3

4 t∥. In both cases, the band
flatness implies that we can construct eigenstates localized
in a single hexagon plaquette. The localized eigenstates for
the case of λ = 0 are constructed in Ref. [29], and those
for the case of λ = 3

4 t∥ were presented in Ref. [35]. Since
the kinetic energy is suppressed in the flat bands, interaction
effects are nonperturbative. Wigner crystallization [29] and
ferromagnetism [33] have been studied in the flat band at
λ = 0.

V. BAND TOPOLOGY AND BAND CROSSINGS

In this section, we study the topology of band structures
after SO coupling λ is turned on. Due to the sz conservation,
the Z2 topological class is augmented to the spin Chern class.
Without loss of generality, we only use the pattern of Chern
numbers of the sector s = ↑ to characterize the band topology,
and that of the s = ↓ sector is just with an opposite sign. The
Berry curvature for the ith band is defined as

Fi(k⃗) = ∂kx
Ay (k⃗) − ∂ky

Ax (k⃗) (31)

in which the Berry connection is defined as A⃗i(k⃗) =
− i⟨φi(k⃗)|∇⃗k|φi(k⃗)⟩. The spin Chern number of band i can
be obtained through the integral over the entire first Brillouin
zone as

Cs,i = 1
2π

∫

FBZ

dkx dky Fi(k⃗x ,k⃗y ). (32)

A. Band crossings at !, K , and K ′

We have performed the numerical integration for spin
Chern numbers (Cs,1,Cs,2,Cs,3,Cs,4) for H↑(k⃗) as presented in
Fig. 1 based on Eq. (32). The phase boundary lines L1,2,3 are
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FIG. 1. Phases with different spin Chern number patterns
(Cs1,Cs2,Cs3,Cs4) vs SO coupling strength λ and the sublattice
asymmetry parameter m. Due to the sz conservation and TR
symmetry, only those of the four s = ↑ bands are shown. Phase
boundaries L1,2,3 satisfy the level crossing conditions located at *,
K , and K ′, respectively. Their analytic expressions are λ2 − m2 =
( 3

4 t∥)2, λ = m, and λ m = ( 3
4 t∥)2, respectively. L1 and L3 intersect

at (λ,m) = ( 3
4 (

√
5 + 2), 3

4 (
√

5 − 2)) ≈ (1.54,0.36), and L2 and L3

intersect at (λ,m) = ( 3
4 , 3

4 ).
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ANALYSIS OF THE BAND SPECTRA

We have examined the orbital Hall conductivity properties of three distinct topological phases displayed by the
Hamiltonian H defined by Eq. (1) in the main text. They are labelled as B1, A1, and B2 phases, according to
the classifications used in Ref. 13. Figure SI shows the "-spin electron energy bands for the system in these three
phases. The spin-# bands can be deduced by applying a time-reversal symmetry operation on H. Panel (a) illustrates
the band structure of the B1 phase, calculated for �I = 0.2Vpp�, and VAB = 0. We notice that the SOC causes
three energy gaps to open, one originating from the K(K 0) points, and the other two at �, while the flat bands
acquire a slight energy dispersion. Panel (b) shows the energy bands for the system in the A1 phase, calculated
with �I = 0.2Vpp�, and VAB = 0.8Vpp�. The sub-lattice potential affects each valley differently, as expected because
it breaks the degeneracy between eigenvalues at the K and K

0 symmetry points. By examining the opposite spin
polarisation one finds that this phase exhibits a strong spin-valley locking, as demonstrated in Refs. 10, 13, 14. Panel
(c) displays the energy bands for the system in the B2 phase, calculated with �I = 1.1Vpp� and VAB = 0.8Vpp�. In
this case, �I is comparable but slightly larger than VAB , and we note that they lead to effects that are similar to
those exhibited panel (b), including a strong spin-valley locking. However, with valley polarisation stronger than in
the previous case due to the relatively large values of �I and VAB .

Figure SI: "-spin electron energy bands calculated as functions of wave vectors along some symmetry directions in the 2D
Brillouin zone for three distinct topological phases: (a) B1 with �I = 0.2Vpp� and VAB = 0. (b) A1 with �I = 0.2Vpp� and
VAB = 0.8Vpp� (c) B2 with �I = 1.1Vpp� and VAB = 0.8Vpp�.

ORBITAL TEXTURE ANALYSIS

In contrast with the SHE, our calculations show that the OHE is not quantised, and happens even in the absence of
metallic edge states. In order to explore the origin of the OHE in this model system, we investigated the characteristics
of its orbital angular momentum in reciprocal space within the 2D first BZ. Figure 2 of the main text displays both
the in-plane and the out-of-plane orbital polarisations of the lowest "-spin energy band for the B1, A1 and B2 phases.
Results for the #-spin bands can be easily obtained by time-reversal symmetry operation.
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where

γ1± (k⃗) =
3∑

i=1

eik⃗·êi ± 2iθi ,

γ2± (k⃗) =
3∑

i=1

eik⃗·êi ± iθi , (24)

N (k⃗) = 3 − ηc(k⃗).

In terms of this set of new bases, H↑(k⃗) is represented as

H↑(k⃗)

=

⎡

⎢⎢⎣

m − n(k⃗) − 3
2 t∥ h(k⃗) 0

− 3
2 t∥ − m + n(k⃗) 0 h(− k⃗)

h∗(k⃗) 0 m + n(k⃗) − 1
2 t∥l

∗(k⃗)
0 h∗(− k⃗) − 1

2 t∥l(k⃗) − m − n(k⃗)

⎤

⎥⎥⎦,

(25)

where for simplicity t⊥ is set to 0; n(k⃗), l(k⃗), and h(k⃗) are
expressed as

n(k⃗) =
√

3λ

Nk

ηs(k⃗), l(k⃗) =
∑

i

eik⃗·êi ,

h(k⃗) = iλ

Nk

⎧
⎨

⎩

(
∑

i

eik⃗·êi

)2

− 3

(
∑

i

e− ik⃗·êi

)⎫
⎬

⎭ .

(26)

In the absence of SO coupling, h(k⃗) = n(k⃗) = 0, the above
matrix of H↑(k⃗) is already block diagonalized. The left-up
block represents the Hamiltonian matrix in the subspace
spanned by the bottom band |φ1(k⃗)⟩ and top band |φ4(k⃗)⟩, and
the right-bottom block represents that in the subspace spanned
by the middle two bands |φ2,3(k⃗)⟩. Apparently, the bottom and
top bands are flat as

E1,4 = ±
√( 3

2 t∥
)2 + m2, (27)

whose eigen wave functions are solved as
[
|φ1(k⃗)⟩
|φ4(k⃗)⟩

]

=
[

sin α
2 cos α

2

cos α
2 − sin α

2

] [
|A1(k⃗)⟩
|B1(k⃗)⟩

]

, (28)

where α = arctan 3t∥
2m

. As for the middle two bands, the spectra
can be easily diagonalized as

E2,3(k⃗) = ±
√

1
4 t2

∥η2
c (k⃗) + m2. (29)

The spectrum is the same as that in graphene at m = 0. The
eigen wave functions are enriched by orbital structures which
can be solved as

[
|φ2(k⃗)⟩
|φ3(k⃗)⟩

]

=
[

sin β
2 cos β

2 eiφ

cos β
2 e− iφ − sin β

2

] [
|A2(k⃗)⟩
|B2(k⃗)⟩

]

, (30)

where β(k⃗) = arctan[ t∥
2m

l(k⃗)] and φ(k⃗) = arg l(k⃗).

D. Appearance of flat bands

According to the analytical solution of spectra Eq. (16), flat
bands appear in two different situations: (i) In the absence of

SO coupling such that the bottom and top bands are flat with
the eigen energies described by Eq. (27); (ii) in the presence
of SO coupling, at λ = 3

4 t∥, the two middle bands are flat
with the energies E2,3(k⃗) = ± 3

4 t∥. In both cases, the band
flatness implies that we can construct eigenstates localized
in a single hexagon plaquette. The localized eigenstates for
the case of λ = 0 are constructed in Ref. [29], and those
for the case of λ = 3

4 t∥ were presented in Ref. [35]. Since
the kinetic energy is suppressed in the flat bands, interaction
effects are nonperturbative. Wigner crystallization [29] and
ferromagnetism [33] have been studied in the flat band at
λ = 0.

V. BAND TOPOLOGY AND BAND CROSSINGS

In this section, we study the topology of band structures
after SO coupling λ is turned on. Due to the sz conservation,
the Z2 topological class is augmented to the spin Chern class.
Without loss of generality, we only use the pattern of Chern
numbers of the sector s = ↑ to characterize the band topology,
and that of the s = ↓ sector is just with an opposite sign. The
Berry curvature for the ith band is defined as

Fi(k⃗) = ∂kx
Ay (k⃗) − ∂ky

Ax (k⃗) (31)

in which the Berry connection is defined as A⃗i(k⃗) =
− i⟨φi(k⃗)|∇⃗k|φi(k⃗)⟩. The spin Chern number of band i can
be obtained through the integral over the entire first Brillouin
zone as

Cs,i = 1
2π

∫

FBZ

dkx dky Fi(k⃗x ,k⃗y ). (32)

A. Band crossings at !, K , and K ′

We have performed the numerical integration for spin
Chern numbers (Cs,1,Cs,2,Cs,3,Cs,4) for H↑(k⃗) as presented in
Fig. 1 based on Eq. (32). The phase boundary lines L1,2,3 are
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FIG. 1. Phases with different spin Chern number patterns
(Cs1,Cs2,Cs3,Cs4) vs SO coupling strength λ and the sublattice
asymmetry parameter m. Due to the sz conservation and TR
symmetry, only those of the four s = ↑ bands are shown. Phase
boundaries L1,2,3 satisfy the level crossing conditions located at *,
K , and K ′, respectively. Their analytic expressions are λ2 − m2 =
( 3

4 t∥)2, λ = m, and λ m = ( 3
4 t∥)2, respectively. L1 and L3 intersect

at (λ,m) = ( 3
4 (

√
5 + 2), 3

4 (
√

5 − 2)) ≈ (1.54,0.36), and L2 and L3

intersect at (λ,m) = ( 3
4 , 3

4 ).
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1

that present orbital textures [19, 32] and novel 2D ma-
terials with orbital magnetism, as observed recently in
graphene twisted bilayer [33]
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Supplementary material for “Two dimensional orbital Hall insulators”

ANALYSIS OF THE BAND SPECTRA

We have examined the orbital Hall conductivity properties of three distinct topological phases displayed by the
Hamiltonian H defined by Eq. (1) in the main text. They are labelled as B1, A1, and B2 phases, according to
the classifications used in Ref. 13. Figure SI shows the "-spin electron energy bands for the system in these three
phases. The spin-# bands can be deduced by applying a time-reversal symmetry operation on H. Panel (a) illustrates
the band structure of the B1 phase, calculated for �I = 0.2Vpp�, and VAB = 0. We notice that the SOC causes
three energy gaps to open, one originating from the K(K 0) points, and the other two at �, while the flat bands
acquire a slight energy dispersion. Panel (b) shows the energy bands for the system in the A1 phase, calculated
with �I = 0.2Vpp�, and VAB = 0.8Vpp�. The sub-lattice potential affects each valley differently, as expected because
it breaks the degeneracy between eigenvalues at the K and K

0 symmetry points. By examining the opposite spin
polarisation one finds that this phase exhibits a strong spin-valley locking, as demonstrated in Refs. 10, 13, 14. Panel
(c) displays the energy bands for the system in the B2 phase, calculated with �I = 1.1Vpp� and VAB = 0.8Vpp�. In
this case, �I is comparable but slightly larger than VAB , and we note that they lead to effects that are similar to
those exhibited panel (b), including a strong spin-valley locking. However, with valley polarisation stronger than in
the previous case due to the relatively large values of �I and VAB .

Figure SI: "-spin electron energy bands calculated as functions of wave vectors along some symmetry directions in the 2D
Brillouin zone for three distinct topological phases: (a) B1 with �I = 0.2Vpp� and VAB = 0. (b) A1 with �I = 0.2Vpp� and
VAB = 0.8Vpp� (c) B2 with �I = 1.1Vpp� and VAB = 0.8Vpp�.

ORBITAL TEXTURE ANALYSIS

In contrast with the SHE, our calculations show that the OHE is not quantised, and happens even in the absence of
metallic edge states. In order to explore the origin of the OHE in this model system, we investigated the characteristics
of its orbital angular momentum in reciprocal space within the 2D first BZ. Figure 2 of the main text displays both
the in-plane and the out-of-plane orbital polarisations of the lowest "-spin energy band for the B1, A1 and B2 phases.
Results for the #-spin bands can be easily obtained by time-reversal symmetry operation.

SHE

OHE

B2

HONEYCOMB LATTICE WITH MULTIORBITAL . . . PHYSICAL REVIEW B 90 , 075114 (2014)

where

γ1± (k⃗) =
3∑

i=1

eik⃗·êi ± 2iθi ,

γ2± (k⃗) =
3∑

i=1

eik⃗·êi ± iθi , (24)

N (k⃗) = 3 − ηc(k⃗).

In terms of this set of new bases, H↑(k⃗) is represented as

H↑(k⃗)

=

⎡

⎢⎢⎣

m − n(k⃗) − 3
2 t∥ h(k⃗) 0

− 3
2 t∥ − m + n(k⃗) 0 h(− k⃗)

h∗(k⃗) 0 m + n(k⃗) − 1
2 t∥l

∗(k⃗)
0 h∗(− k⃗) − 1

2 t∥l(k⃗) − m − n(k⃗)

⎤

⎥⎥⎦,

(25)

where for simplicity t⊥ is set to 0; n(k⃗), l(k⃗), and h(k⃗) are
expressed as

n(k⃗) =
√

3λ

Nk

ηs(k⃗), l(k⃗) =
∑

i

eik⃗·êi ,

h(k⃗) = iλ

Nk

⎧
⎨

⎩

(
∑

i

eik⃗·êi

)2

− 3

(
∑

i

e− ik⃗·êi

)⎫
⎬

⎭ .

(26)

In the absence of SO coupling, h(k⃗) = n(k⃗) = 0, the above
matrix of H↑(k⃗) is already block diagonalized. The left-up
block represents the Hamiltonian matrix in the subspace
spanned by the bottom band |φ1(k⃗)⟩ and top band |φ4(k⃗)⟩, and
the right-bottom block represents that in the subspace spanned
by the middle two bands |φ2,3(k⃗)⟩. Apparently, the bottom and
top bands are flat as

E1,4 = ±
√( 3

2 t∥
)2 + m2, (27)

whose eigen wave functions are solved as
[
|φ1(k⃗)⟩
|φ4(k⃗)⟩

]

=
[

sin α
2 cos α

2

cos α
2 − sin α

2

] [
|A1(k⃗)⟩
|B1(k⃗)⟩

]

, (28)

where α = arctan 3t∥
2m

. As for the middle two bands, the spectra
can be easily diagonalized as

E2,3(k⃗) = ±
√

1
4 t2

∥η2
c (k⃗) + m2. (29)

The spectrum is the same as that in graphene at m = 0. The
eigen wave functions are enriched by orbital structures which
can be solved as

[
|φ2(k⃗)⟩
|φ3(k⃗)⟩

]

=
[

sin β
2 cos β

2 eiφ

cos β
2 e− iφ − sin β

2

] [
|A2(k⃗)⟩
|B2(k⃗)⟩

]

, (30)

where β(k⃗) = arctan[ t∥
2m

l(k⃗)] and φ(k⃗) = arg l(k⃗).

D. Appearance of flat bands

According to the analytical solution of spectra Eq. (16), flat
bands appear in two different situations: (i) In the absence of

SO coupling such that the bottom and top bands are flat with
the eigen energies described by Eq. (27); (ii) in the presence
of SO coupling, at λ = 3

4 t∥, the two middle bands are flat
with the energies E2,3(k⃗) = ± 3

4 t∥. In both cases, the band
flatness implies that we can construct eigenstates localized
in a single hexagon plaquette. The localized eigenstates for
the case of λ = 0 are constructed in Ref. [29], and those
for the case of λ = 3

4 t∥ were presented in Ref. [35]. Since
the kinetic energy is suppressed in the flat bands, interaction
effects are nonperturbative. Wigner crystallization [29] and
ferromagnetism [33] have been studied in the flat band at
λ = 0.

V. BAND TOPOLOGY AND BAND CROSSINGS

In this section, we study the topology of band structures
after SO coupling λ is turned on. Due to the sz conservation,
the Z2 topological class is augmented to the spin Chern class.
Without loss of generality, we only use the pattern of Chern
numbers of the sector s = ↑ to characterize the band topology,
and that of the s = ↓ sector is just with an opposite sign. The
Berry curvature for the ith band is defined as

Fi(k⃗) = ∂kx
Ay (k⃗) − ∂ky

Ax (k⃗) (31)

in which the Berry connection is defined as A⃗i(k⃗) =
− i⟨φi(k⃗)|∇⃗k|φi(k⃗)⟩. The spin Chern number of band i can
be obtained through the integral over the entire first Brillouin
zone as

Cs,i = 1
2π

∫

FBZ

dkx dky Fi(k⃗x ,k⃗y ). (32)

A. Band crossings at !, K , and K ′

We have performed the numerical integration for spin
Chern numbers (Cs,1,Cs,2,Cs,3,Cs,4) for H↑(k⃗) as presented in
Fig. 1 based on Eq. (32). The phase boundary lines L1,2,3 are
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FIG. 1. Phases with different spin Chern number patterns
(Cs1,Cs2,Cs3,Cs4) vs SO coupling strength λ and the sublattice
asymmetry parameter m. Due to the sz conservation and TR
symmetry, only those of the four s = ↑ bands are shown. Phase
boundaries L1,2,3 satisfy the level crossing conditions located at *,
K , and K ′, respectively. Their analytic expressions are λ2 − m2 =
( 3

4 t∥)2, λ = m, and λ m = ( 3
4 t∥)2, respectively. L1 and L3 intersect

at (λ,m) = ( 3
4 (

√
5 + 2), 3

4 (
√

5 − 2)) ≈ (1.54,0.36), and L2 and L3

intersect at (λ,m) = ( 3
4 , 3

4 ).

075114-5

B2

http://www.if.ufrj.br


OHE IN TMDS



@TGRAPPOPORT SPICE WORKSHOP - 2D VAN DER WAALS SPIN SYSTEMS

OHE IN TRANSITION METAL DICHALCOGENIDES(1H)

d

d

d
2
z dxy

dx2+y2

H0 =
X

hiji

X

µ⌫s

t
µ⌫
ij d

†
iµsdj⌫s+

X

iµs

✏iµd
†
iµsdiµs+

X

iµ⌫s

hz
µ⌫sd

†
iµsdi⌫s

i j

~Ri
~Rj hiji

d
†
iµs

s dµ dz2 dxy

dx2+y2 ✏iµ µ

i tij dµ

hz
µ⌫s = �ILz

µ⌫s
z
ss

dz2 dxy dx2+y2

Lz

Lz =

2

4
0 0 0
0 0 2i
0 �2i 0

3

5

�
z
OH(SH) = e~

X

n 6=m

X

s=",#

Z

B.Z.

d
2
k

(2⇡)2
(fm~k � fn~k)

"⌦
 
~k
n,s

��jXz
y (~k)

�� ~k
m,s

↵⌦
 
~k
m,s

��vx(~k)
�� ~k

n,s

↵

(E~k
n,s � E

~k
m,s + i0+)2

#

vx(y)(~k) =

@H(~k)/@kx(y) j
Xz
y (~k) =

�
Xzvy(~k) + vy(~k)Xz

�
/2

Xz = Lz(sz)
fm(n)~k

MoS2 WSe2

Lz

2

2

L = 2
dz2 dxy dx2+y2

m` = 0 ml = ±2

SU(2) Lx,y

Lz

d

d

d
2
z dxy

dx2+y2

H0 =
X

hiji

X

µ⌫s

t
µ⌫
ij d

†
iµsdj⌫s+

X

iµs

✏iµd
†
iµsdiµs+

X

iµ⌫s

hz
µ⌫sd

†
iµsdi⌫s

i j

~Ri
~Rj hiji

d
†
iµs

s dµ dz2 dxy

dx2+y2 ✏iµ µ

i tij dµ

hz
µ⌫s = �ILz

µ⌫s
z
ss

dz2 dxy dx2+y2

Lz

Lz =

2

4
0 0 0
0 0 2i
0 �2i 0

3

5

�
z
OH(SH) = e~

X

n 6=m

X

s=",#

Z

B.Z.

d
2
k

(2⇡)2
(fm~k � fn~k)

"⌦
 
~k
n,s

��jXz
y (~k)

�� ~k
m,s

↵⌦
 
~k
m,s

��vx(~k)
�� ~k

n,s

↵

(E~k
n,s � E

~k
m,s + i0+)2

#

vx(y)(~k) =

@H(~k)/@kx(y) j
Xz
y (~k) =

�
Xzvy(~k) + vy(~k)Xz

�
/2

Xz = Lz(sz)
fm(n)~k

MoS2 WSe2

Lz

2

2

L = 2
dz2 dxy dx2+y2

m` = 0 ml = ±2

SU(2) Lx,y

Lz

G. B. Liu et al, PRB 2012

3 bands model based on TM d orbitals

Di Xiao, PRL 2012

Spin-valley locking

http://www.if.ufrj.br


@TGRAPPOPORT SPICE WORKSHOP - 2D VAN DER WAALS SPIN SYSTEMS

ORBITAL TEXTURES 

SOC 

Orbital-Valley locking in the valence band!

SOC

4

Figure 2: (a) Band structure for MoS2 in the three bands ap-
proximation without SOC. (b) Spin Hall conductivity (red),
and orbital Hall conductivity (blue), together with the den-
sity of states (grey), calculated as functions of Fermi energy.
Panels (c) and (d):Orbital texture for three bands model of
MoS2. We show in the left the edge of valence band, in the
middle the edge of conduction band, and in the right the first
high energy band. Panels (c) show the texture without the
inclusion of SOC. Panels (d) and (e) show the texture for the
same three bands of "-spin and #-spin sectors, respectively,
but with the inclusion of SOC.

3 next nearest neighbors do not affect the orbital texture.
The texture of the conduction band near valleys is sim-
ilar to a Dresselhaus orbital texture present in px � py
model in honeycomb lattice [16] which also has an orbital
Hall insulator phase for high electron/hole concentration.
When SOC is included (Fig. 2 (d) and (e)), the orbital-
valley locking persists. The in-plane orbital texture is not
qualitatively affected by the SOC, but the out-of-plane
texture is strongly affected near � points of the conduc-
tion bands for this simplified model, which acquires a full
out-of-plane orbital polarized character, with the orbital
polarization having opposite directions in different spin
sectors. At K and K 0 valleys, again, the out-of-plane or-
bital texture is only quantitatively corrected by the SOC,
and it has the same signal independent of spin sector. In
spite of that, the spin gets coupled to the different valleys,

resulting in the well known spin-valley locking, which is
responsible for effects such as the circular dichroism in
TMDs [17]. We need the orbital texture of the other
spin component here. of the electronic gap.

Figure 3: (a) Band structure for MoS2 in the three bands ap-
proximation without SOC. (b) Spin Hall conductivity (red),
and orbital Hall conductivity (blue), together with the den-
sity of states (grey), calculated as functions of Fermi energy.
Panels (c) and (d):Orbital texture for three bands model of
MoS2. We show in the left the edge of valence band, in the
middle the edge of conduction band, and in the right the first
high energy band. Panels (c) show the texture without the
inclusion of SOC. Panels (d) and (e) show the texture for the
same three bands of "-spin and #-spin sectors, respectively,
but with the inclusion of SOC.

Up to now, we have used the simplified three bands
model for unveiling the main features of the orbital Hall
insulator phase of TMDs. Although this model describes
very well the physics near valleys, which are responsi-
ble for the main contribution to OHE, and give us good
insights about phenomena, our finding need to be cor-
roborated by a more realistic calculation, that is not re-
stricted to a subsector of the d orbitals of TM atoms.
This is specially relevant in this scenario because we are
dealing with more than the electronic properties near the
energy gap. For a realistic calculation of the orbital con-
ductivity we need to consider the orbital angular momen-
tum of atomic orbitals located in chalcogens, for example.
To this end, we have performed density-functional the-
ory (DFT) calculations, within the local-density approx-
imation (LDA) as implemented in Quantum Espresso
[28]. We have used norm-conserving and fully relativis-
tic pseudopotentials [29, 30]. We have defined a basis
of atomic orbitals using Wannier90 [21]. For MoS2, that
includes the s, px, py and pz orbitals of the chalcogen
atoms and dxy, dxz,dyz, dx2�y2 and dz2 orbitals of the
TM atoms. The effective tight-binding Hamiltonian ob-
tained in Wannier90 is then exported to KITE, with the
help of PythTB scripts [? ]. Figure 3 (a) shows the band-
structure calculation for Wannier90 in comparison with
DFT calculations for MoS2 without SOC where we can
see a good agreement between the effective tight-binding
hamiltonian and the DFT calculations, specially in the
vicinity

For the spin and orbital transport calculations, we con-

1 2 3

1 2 3

1 2 3

Zero SOC

MoS2
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CONCLUSIONS/ PERSPECTIVES

•Metallic  multi-orbital 2D materials can host large 
OHE in the absence of SOC

• Trivial multi-orbital 2D insulators can host OHE 

•Non-quantized orbital Hall plateaus

•TMDs present sizeable orbital Hall plateaus 

•OHE can be used for example, for orbital torque 
transfer

•OHE widens the pool of materials that can be used 
for spin-orbitronics.
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