ORBITAL HALL EFFECT IN 2D MATERIALS

TATIANA G. RAPPOPORT **MINHO UNIVERSITY UNIVERSIDADE FEDERAL DO RIO DE JANEIRO**

Fundação para a Ciência e a Tecnologia

COLLABORATORS

Luis Canonico UFF

Tarik Cysne UFF

L. M. Canonico, T. G. Rappoport, R. B. Muniz, Phys. Rev. Lett. 122 (2019) 196601.

L. M. Canonico, T. P. Cysne, T. G. Rappoport and R. B. Muniz, Phys. Rev. B 101, 075429 (2020)

L. M. Canonico, T. P. Cysne, A. Molina-Sanchez, R. B. Muniz and T. G. Rappoport Phys. Rev. B 101, 161409 (2020).

@TGRAPPOPORT

Roberto Bechara Muniz UFF

NUMERICAL CALCULATIONS

AIRES FERREIRA University of York

@TGRAPPOPORT

TATIANA RAPPOPORT Federal University of Rio de Janeiro

JOÃO M. V. P. LOPES Universidade do Porto

Open Source

https://quantum-kite.com/

KITE: high-performance accurate modelling of electronic structure and response functions of large molecules, disordered crystals and heterostructures

R. Soc. open sci. 7, 191809 (2020)

LUCIAN COVACI Universiteit Antwerper

MIŠA ANĐELKOVIĆ Universiteit Antwerpen

SIMÃO MENESES JOÃO

Universidade do Porto

Python Scripts

Evaluation of response functions in systems with up to 10¹⁰ orbitals

ORBITRONICS

Orbital angular momentum (OAM) can be manipulated like spin

No need of exchange interaction or SOC

Orbital Hall effect

B. A. Bernevig et al. PRL 2005 H. Kontani et al. PRL 2009 D. Go et al. PRL 2018 ...

Jin-Hong Park et al PRB 2012 Sp metals D. Go et al. Sci.Rep. 2017 Tin Teluride monolayers Jeongwoo Kim et al, Nature Comm 2019

Orbital Rashba-Edelstein Effect

T. Koretsune, PRB 2012 T. Yoda et al Nano Letters 2018 N.Salemi et al. Nature Comm. 2019

Orbital Rashba effect

Xi Chen et al. Nature Comm. 2018 D. Go et al. Phys. Rev. Research 2020 Z. C. Zheng et al, PR. Research 2020 Y. Tazaki et al.ArXiv:2004.09165

Orbital Chern insulators

A. L. Sharpe et al. Science 2019

- M. Serlin et al. Science 2019
- G. Chen et al. Nature 2020

近 べ ぶ ORBITAL HALL EFFECT

@TGRAPPOPORT

Orbital angular momentum (OAM) analogous of the spin Hall effect

First proposal (for Silicon): B. A. Bernevig, T. L. Hughes, and S-C. Zhang, PRL (2005)

$$\sigma_{\text{OH(SH)}} = \frac{e}{\hbar} \sum_{n \neq m} \int \frac{d^3 k}{(2\pi)^3} \left(f_{m\mathbf{k}} - f_{n\mathbf{k}} \right) \Omega_{nm\mathbf{k}}^{X_z}, \qquad j_y^{X_z} = \left(v_y X_z + X_z v_y \right) / 2$$
$$\Omega_{nm\mathbf{k}}^{X_z} = \hbar^2 \text{Im} \left[\frac{\left\langle u_{n\mathbf{k}} \middle| j_y^{X_z} \middle| u_{m\mathbf{k}} \right\rangle \left\langle u_{m\mathbf{k}} \middle| v_x \middle| u_{n\mathbf{k}} \right\rangle}{\left(E_{n\mathbf{k}} - E_{m\mathbf{k}} + i\eta \right)^2} \right] \qquad X_z = L_z(S_z)$$

OHE IN METALLIC 3D SYSTEMS

H. Kontani et al. PRL 2009 T. Tanaka et al. PRB 2008

@TGRAPPOPORT

D Go, HW Lee arXiv:1903.01085 D Jo, D Go, HW Lee PRB, 2018

Orbital Texture induce OHE

D Jo, D Go, HW Lee PRL, 2018

SPICE WORKSHOP – 2D VAN DER WAALS SPIN SYSTEMS

 κ_x

(C)

 $\mathbf{E} = E_x \hat{\mathbf{x}} \mathbf{\uparrow} k_z$

 $\propto {f E} imes {f k}$

ORBITAL TEXTURES IN SOLIDS

Topological Insulators

H Zhang, CX Liu, SC Zhang PRL 2013 Yue Cao et al Nat. Phys. 2013

T. Ritschel et al. Nature Phys. 2015 Yi Chen et al Nature Phys. 2019

1200 m\

@TGRAPPOPORT

1T Ta-based TMD layers

2DEG in Oxides

J.J.Kim et al, Nat. Comm. 2014

Borophene

F. C. de Lima et al., Nanoletters. 2019

OUR MINIMAL MODEL

GENERAL ASPECTS

F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, R. Claessen, Science 2017

Fig. 2. Theoretical band structure and ARPES measurements. (A) DFT band structure calculation (using a **@TGRAPPOPORT**

$$\mathcal{H} = \sum_{\langle ij \rangle} \sum_{\mu\nu s} t^{\mu\nu}_{ij} p^{\dagger}_{i\mu s} p_{j\nu s} + \sum_{i\mu s} \epsilon_i p^{\dagger}_{i\mu s} p_{i\mu s}$$

$$\epsilon_i = \pm V_{AB}$$

$$p_{\mu} = p_{\pm} = \frac{1}{\sqrt{2}}(p_x \pm ip_y)$$

(a)
$$3$$

(b) 2
(c) 1
(c

C. Wu, PRL (2008)

@TGRAPPOPORT

Sz is a good quantum number

SUBLATTICE SYMMETRY BREAKING

Luis M. Canonico, Tatiana G. Rappoport, R. B. Muniz, Phys. Rev. Lett. 122 (2019) 196601.

@TGRAPPOPORT

P_X-P_Y: TOPOLOGICAL PHASE DIAGRAM

 A_1

 B_1

@TGRAPPOPORT

 B_2

Energy (eV)

ORBITAL ANGULAR MOMENTUM

P_X-P_Y- ORBITAL TEXTURES

Because of the restricted Hilbert space, we define the spinors:

$$l_{z} = |p_{+}\rangle\langle p_{+}| - |p_{-}\rangle\langle p_{-}|,$$
$$l_{x} = |p_{+}\rangle\langle p_{-}| + |p_{-}\rangle\langle p_{+}|,$$
$$l_{y} = i\Big(|p_{-}\rangle\langle p_{+}| - |p_{+}\rangle\langle p_{-}|\Big).$$

$$\vec{l}_n(\vec{k}) = \left\langle l_x \right\rangle_n(\vec{k})\hat{x} + \left\langle l_y \right\rangle_n(\vec{k})\hat{y} + \left\langle l_z \right\rangle_n(\vec{k})\hat{z},$$
$$\left\langle l_i \right\rangle_n(\vec{k}) = \sum_{\sigma=A,B} \left\langle \psi_n(\vec{k}) \left| l_i(\sigma) \right| \psi_n(\vec{k}) \right\rangle,$$

@TGRAPPOPORT

$$H_D = -\frac{\sqrt{3}\hbar v_F}{2a} \left(\ell_x \sigma_x + \tau \ell_y \sigma_y\right).$$

 $p_{\mu} = p_{\pm} = \frac{1}{\sqrt{2}}(p_x \pm ip_y)$

-**OHE WITHOUT SOC**

 $V_{AB} = 0.0$ $V_{AB} = 0.8$

@TGRAPPOPORT

Degenerate bands: $\Rightarrow \langle \ell_t^z \rangle = 0$ In-plane orbital texture survives

@TGRAPPOPORT

Dresselhaus "SOC"

 $\sqrt{3}\hbar v_F$ $\left(\ell_x\sigma_x+\tau\ell_y\sigma_y\right).$ $H_D =$ 2a

SPICE WORKSHOP – 2D VAN DER WAALS SPIN SYSTEMS

OHE – PHASE A1

@TGRAPPOPORT

1-OHE – PHASE B2

OHE IN TMDS

近 ネ ジ OHE IN TRANSITION METAL DICHALCOGENIDES(1H)

3 bands model based on TM **d** orbitals

$$d_{z^2}, d_{xy} \text{ and } d_{x^2+y^2},$$

@TGRAPPOPORT

Spin-valley locking

$$L^{z} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 2i \\ 0 & -2i & 0 \end{bmatrix}$$

SPICE WORKSHOP – 2D VAN DER WAALS S

G. B. Liu et al, PRB²⁰ Di Xiao, PRL 2012

Energy (e'

3

2

Orbital-Valley locking in the valence band!

@TGRAPPOPORT

MoS_2

SPICE WORKSHOP – 2D VAN DER WAALS SPIN SYSTEMS

@TGRAPPOPORT

OHE IN TRANSITION METAL DICHALCOGENIDES(1H)

Chalcogen atoms

@TGRAPPOPORT

TM atoms

CONCLUSIONS/ PERSPECTIVES

- Metallic multi-orbital 2D materials can host large OHE in the **absence** of SOC
- Trivial multi-orbital 2D insulators can host OHE
- Non-quantized orbital Hall plateaus
- TMDs present sizeable orbital Hall plateaus
- •OHE can be used for example, for orbital torque transfer
- •OHE widens the pool of materials that can be used for spin-orbitronics.

THANK YOU FOR YOUR ATTENTION