

Electrostatic Control of Magnetism in Van Der Waals Ferromagnets

Ivan Verzhbitskiy

Department of Physics National University of Singapore

ivan@nus.edu.sg
http://www.physics.nus.edu.sg/~phyeda/

Voltage Control Over Magnetism

Siegfried J Methfessel & Holtzberg Frederic (1963) Magnetic device composed of a semiconducting ferromagnetic material US Patent #3271709A Theory of carrier-controlled magnetism

$$T_{\rm c} = S(S+1) \sum_{j} J_{ij}/3k_{\rm B}$$

 $J_{ij} \sim \rho(E_{\rm F})$

M. A. Ruderman and C. Kittel (1954) Phys. Rev. 96, 99

T. Kasuya (1956) Progr. Theoret. Phys. (Kyoto) 16,45

K. Yosida (1957) Phys. Rev. 106, 893

James C. Maxwell (1865) A dynamical theory of the electromagnetic field Phil. Trans. R. Soc.155, pp. 459–512

Voltage Control Over Magnetism

Hideo Ohno et al. (2000), Nature 408, 944

28

Van Der Waals Ferromagnetic Metal: Fe₃GeTe₂

 $\square R_{xv}^r$

Arrott plots

RMCD

20 30

50

Yujun Deng et al. (2018), Nature 563, 94

EDA LAB

Nanomaterials & Devices Group

Zhi Wang et al. (2018), Nature Nano 13, 554

Van der Waals magnets

Ivan Verzhbitskiy et al. (2020), Nature Electronics 3, 460

solid-gate through oxide (SiO₂) S D 0 Top BN

Schematic adopted from Nature Nano 13, 554 (2018)

40

60

lon-gel V_G Ţ (DEME-TFSI) -09 Ē Cr₂Ge₂Te₆-

ionic electrolyte (DEME-TFSI)

Ivan Verzhbitskiy et al. (2020), Nature Electronics 3, 460

Schematic adopted from Nature Nano 13, 554 (2018)

Ivan Verzhbitskiy et al. (2020), Nature Electronics 3, 460

solid-gate through oxide (SiO₂)

Schematic adopted from Nature Nano 13, 554 (2018)

ionic electrolyte (DEME-TFSI)

Ivan Verzhbitskiy et al. (2020), Nature Electronics 3, 460

solid-gate through oxide (SiO₂)

Schematic adopted from Nature Nano 13, 554 (2018)

ionic electrolyte (DEME-TFSI)

Magnetoresistance in gated $Cr_2Ge_2Te_6$

С

6

Ivan Verzhbitskiy et al. (2020), Nature Electronics 3, 460

Cheng Gong, et al. (2017), Nature 546, 265

□ Hysteresis observed at temperatures <u>higher</u> than $T_{\rm C}$ of undoped bulk $Cr_2Ge_2Te_6$ (~66 K)

Ivan Verzhbitskiy et al. (2020), Nature Electronics 3, 460

Ivan Verzhbitskiy et al. (2020), Nature Electronics 3, 460

Ivan Verzhbitskiy et al. (2020), Nature Electronics 3, 460

Magnetoresistance symmetry

Easy axis rotation

Ivan Verzhbitskiy et al. (2020), Nature Electronics 3, 460

□ Easy axis is rotated by 90°

Magnetic domain wall motion

Tuning phase transition

Tuning phase transition

Ivan Verzhbitskiy et al. (2020), Nature Electronics 3, 460

 \Box T_c can be continuously and <u>reversibly</u> tuned over $\Delta T \approx 140$ K

Tuning phase transition

Intercalation compounds of Cr₂Ge₂Te₆

0.2

-0.2

-0.4 [gp]

-0.6

-0.8

400

200 250 300

300

Electrostatic doping in Cr₂Ge₂Te₆ switches the leading magnetic exchange mechanism from superexchange to double exchange

 \Box Strongly doped Cr₂Ge₂Te₆ posses higher Curie temperature and in-plane easy axis

□ This method can in principle be applied to other 2D magnetic systems

Ivan Verzhbitskiy et al. (2020), Nature Electronics 3, 460 https://doi.org/10.1038/s41928-020-0427-7

Acknowledgements

Prof. Dr. Goki Eda NUS, Singapore

Prof. Dr. Hidekazu Kurebayashi UCL, London

Dr. Safe-Ur-Raman Khan UCL, London

Prof. Dr. Feng Yuan Ping NUS, Singapore

Dr. Zhou Jun NUS, Singapore

Ivan Verzhbitskiy et al. (2020), Nature Electronics 3, 460 https://doi.org/10.1038/s41928-020-0427-7

