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General theory of topological insulators

• Topological band theory based 
on Z2 topological band invariant 
of single particle states.
(Fu,	 Kane	and	Mele,	Moore	and	Balents,	Roy)

• Topological field theory of 
topological insulators. Generally 
valid for interacting and 
disordered systems. Directly 
measurable physically. 
Quantized magneto-electric 
effect (Qi,	Hughes	and	Zhang,	Wilzcek)

• For a periodic system, the system is time 
reversal symmetric only when
θ=0  => trivial insulator
θ=π => non-trivial insulator
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The Topological Magneto-Electric (TME) effect
• Equations of axion electrodynamics predict the robust TME effect.

4πP=α θ/2π B4πM=α θ/2π E

• P3=θ/2π is the electro-magnetic polarization, microscopically given by the CS term 
over the momentum space. Change of P3=2nd Chern number!

Wilzcek, axion electrodynamics
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FM FM
chiral fermion

3D	topological	insulator

Gapped Dirac fermions on the surface, chiral fermions 
on the domain wall

QAH	can	be	realized	in	ferromagnetic	TI	(Qi,	Hughes,	Zhang,	PRB	2008) 5

defect, which determines the number of chiral fermion
branches is given by the winding number of !. We now
consider several examples of 3D line defects that are associ-
ated with chiral Dirac fermions.

2. Dislocation in a 3D integer quantum-Hall state

A three-dimensional integer quantum-Hall state can be
thought of as a layered version of the two-dimensional inte-
ger quantum-Hall state. This can be understood most simply
by considering the extreme limit where the layers are com-
pletely decoupled 2D systems. A line dislocation, as shown
in Fig. 3 will then involve an edge of one of the planes and
be associated with a chiral fermion edge state. Clearly, the
chiral fermion mode will remain when the layers are
coupled, provided the bulk gap remains finite. Here we wish
to show how the topological invariant in Eq. !3.1" reflects
this fact.

On a loop surrounding the dislocation parameterized by
s! #0,1$ we may consider a family of Hamiltonians H!k ,s"
given by the Hamiltonian of the original bulk crystal dis-
placed by a distance sB, where B is a lattice vector equal to
the Burgers vector of the defect. The corresponding Bloch
wave functions will thus be given by

umk,s!r" = umk
0 !r − sB" , !3.6"

where umk
0 !r" are Bloch functions for the original crystal. It

then follows that the Berry’s connection is

A = A0 + B · #k − ap!k"$ds , !3.7"

where

Amn
0 !k" = %umk

0 &!k&unk
0 ' · dk

and

amn
p !k" = %umk

0 &!!r + k"&unk
0 ' . !3.8"

With this definition, ap!k" is a periodic function: ap!k+G"
=ap!k" for any reciprocal lattice vector G.69

If the crystal is in a three dimensional quantum-Hall state,
then the nonzero first Chern number is an obstruction to
finding the globally continuous gauge necessary to evaluate
Eq. !3.5". We therefore use Eq. !3.1", which can be evaluated
by noting that

Tr#F ∧ F$ = Tr#B · !2F0 ∧ dk − d#F0,ap$" ∧ ds$ . !3.9"

Upon integrating Tr#F∧F$ the total derivative term vanishes
due to the periodicity of ap. Evaluating the integral is then
straightforward. The integral over s trivially gives 1. We are
then left with

n =
1

2"
B · Gc, !3.10"

where

Gc =
1

2"
(

T3
dk ∧ Tr#F0$ . !3.11"

Gc is a reciprocal lattice vector that corresponds to the triad
of Chern numbers that characterize a 3D system. For in-
stance, in a cubic system Gc= !2" /a"!nx ,ny ,nz", where, for
example nz= !2""−1)Tr#Fxy

0 $dkx∧dky, for any value of kz.
An equivalent formulation is to characterize the displaced

crystal in terms of !. Though Eq. !3.5" cannot be used, Eqs.
!3.1" and !3.4" can be used to implicitly define ! up to an
arbitrary additive constant

!!s" = sB · Gc. !3.12"

3. Topological insulator heterostructures

Another method for engineering chiral Dirac fermions is
use heterostructures that combine topological insulators and
magnetic materials. The simplest version is a topological in-
sulator coated with a magnetic film that opens a time-
reversal symmetry breaking energy gap at the surface. A do-
main wall is then associated with a chiral fermion mode. In
this section we will show how this structure, along with
some variants on the theme, fits into our general framework.
We first describe the structures qualitatively and then analyze
a model that describes them.

Figure 4 shows four possible configurations. Figures 4!a"
and 4!b" involve a topological insulator with magnetic mate-

s

B

FIG. 3. A line dislocation in a three-dimensional quantum-Hall
state characterized by Burgers vector B.

AF-I AF-I

TI θ = π

θ = −ε θ = +ε
F-I F-I

TI θ = π

θ = 0 θ = 0

(a) (b)

AF-TI AF-TI

I θ=0

θ = π−ε θ = π+ε
F-TI F-TI

I θ=0

θ = π θ = π

(c) (d)

FIG. 4. Heterostructure geometries for chiral Dirac fermions. !a"
and !b" show antiferromagnetic or ferromagnetic insulators on the
surface of a topological insulator with chiral Dirac fermions at a
domain wall. !c" and !d" show a domain wall in an antiferromag-
netic or ferromagnetic topological insulator. Chiral fermion modes
are present when the domain wall intersects the surface.

JEFFREY C. Y. TEO AND C. L. KANE PHYSICAL REVIEW B 82, 115120 !2010"
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Experimental observation  of the QAH effect in 5 QL 
CrBiSbTe at 20 mK (Science 2013) 

6



Topological magnetoelectric effect in TIs and QAHE

J	Wang,	B	Lian,	XL	Qi,	SC	Zhang,	PRB	92,	081107	(2015)

1. T-breaking	surface	gap
2. Fully	insulating
3. Finite	size	



QAH effect vs TME effect
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QAH	insulator Axion insulator

n T-breaking	surfaces	

n With magnetic	domain

n Gapless	edge	mode	at	domain	wall

n Fully	insulating

n 2D	system,	need	finite	size

n T-breaking	surfaces	

n Without	magnetic	domain

n No	gapless	edge/hinge	mode

n Fully	insulating

n 3D	system,	finite	size	effect	in	2D
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Multiple types of topological states in superlattice

JW,	B	Lian,	SC	Zhang,	PRB	93,	045115	(2016)

JING WANG, BIAO LIAN, AND SHOU-CHENG ZHANG PHYSICAL REVIEW B 93, 045115 (2016)
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FIG. 1. Schematic drawing of the proposed systems to realize the
dynamical axion field. (a) The magnetic TI superlattice structure.
The upper and lower halves of TI films are doped with Cr and
Mn, respectively. The arrows in TI layers indicate the magnetization
direction. In each crystalline unit cell, the z-direction thickness of
Mn-doped TI, Cr-doped TI, and NI layers are ℓm, ℓc, and ℓn. (b)
Topological PM insulator: 3D TI materials close to topological QCP
doped with Cr, where a PM state is realized.

a local exchange coupling with the band electrons described by
Jν

∑
xi

Sν(xi) · s, where Sν(xi) denotes the magnetic impurity
spin at the position xi , ν = c,m denotes the Cr and Mn,
respectively, and s = σ/2 is the local electron spin. The
main advantage of such a superlattice is the two types of
magnetic ions have opposite signs of exchange-coupling
parameters in TI materials, namely, Jm < 0 and Jc > 0. This
is experimentally verified by opposite signs of the anomalous
Hall conductance in the insulating regime of Mn-doped [22]
and Cr-doped [23] Bi2Te3 family materials. Therefore, a
uniform magnetization in the superlattice will induce opposite
exchange fields in the upper and lower halves of a TI layer.
The Hamiltonian describing the superlattice can be written as

H =
∑

k∥,i,j

[
vF τ z(ẑ × σ ) · k∥δi,j + maτ

zσ zδi,j + mbσ
zδi,j

+ tsτ
xδi,j + tn

2
τ+δi+1,j + tn

2
τ−δi−1,j

]
c
†
k∥i

ck∥j , (2)

where i and j label distinct magnetic TI layers, σβ and τβ

(β = x,y,z) are Pauli matrices acting on the spin and the
top/bottom surface of the parent TI layer, respectively. The
first term in the Hamiltonian describes the top and bottom
surface states of a parent TI layer, where a single 2D Dirac
node is considered for Bi2Te3 family materials [24]. vF is
the Fermi velocity. k∥ = (kx,ky) is the in-plane momentum.
The second and third terms describe the Zeeman-type spin
splitting for surface states induced by the ferromagnetic
(FM) exchange couplings 'c of Cr and 'm of Mn along
z axis, where ma = ('c − 'm)/2 is the staggered Zeeman
field and mb = ('c + 'm)/2 is the uniform Zeeman field
[25]. In the mean field (MF) approximation, the exchange
fields of Mn and Cr are given by 'ν = yνJν⟨Sz

ν⟩/2. Here, y
is the doping concentration of magnetic ion, ⟨Sz⟩ is the MF
expectation value of the ion spin in the z direction, ν = c,m.
The thickness-dependent parameters ts and tn describe the
tunneling between the top and bottom surface states within
the same (ts) or neighboring (tn) TI layer. For simplicity, we
assume Jc = −Jm = J > 0.

III. RESULTS

A. Phase diagram

First, we examine the phase diagram of the system. The
momentum space Hamiltonian now is

H(k) =
5∑

a=1

da(k)(a + mb(
12, (3)

where d1,2,3,4,5(k) = [vF ky, − vF kx, − tn sin(kzℓ),ts +
tn cos(kzℓ),ma], and the Dirac ( matrices (1,2,3,4,5 =
(τ zσ x,τ zσ y,τ y,τ x,τ zσ z), (12 = [(1,(2]/2i = σ z. The T
and P transformations are defined as T = iσ yK (with
K being the complex conjugation operator) and P = τ x ,
respectively. The band dispersion is given by

ε2
k± = v2

F

(
k2
x + k2

y

)
+

[
mb ±

√
m2

a + t2(kz)
]2

, (4)

where t(kz) =
√

t2
s + t2

n + 2ts tn cos(kzℓ) and ℓ is the superlat-
tice period along the growth z direction with ℓ = ℓm + ℓc + ℓn.
In the absence of exchange field, i.e., ma = mb = 0, the system
is fully gapped when |ts | ̸= |tn|, while it has a gapless Dirac
node when ts/tn = ±1 [26]. For convenience, we assume
here ts/tn ! 0. When ts/tn = 1, the Dirac point is located
at kx = ky = 0, kz = π/ℓ. Such a critical Dirac point opens
a gap when ts/tn deviates from unity, resulting in a 3D TI
(tn > ts) or NI (tn < ts). Since both P and T symmetries are
respected, the axion field θ given by Eq. (1) is either 0 or π
in this case, as shown in Fig. 2(b). In the case of ma,b ̸= 0,
the band structure has two nondegenerate Weyl nodes when
t2
c1 ≡ (ts − tn)2 < m2

b − m2
a < (ts + tn)2 ≡ t2

c2, located on the
kz axis at kz = π/ℓ ± k0 where k0ℓ = arccos[(m2

b − m2
a −

t2
s − t2

n )/2ts tn]. Such a Weyl semimetal phase occurs in a
finite region in the phase diagram as shown in Fig. 2(a).
When m2

b − m2
a > t2

c2, the system is a 3D quantum anomalous
Hall (QAH) insulator characterized by a quantized Hall
conductivity e2/h per magnetic TI layer [27]. Interesting
physics happens when m2

b − m2
a < t2

c1. The system is fully
gapped, however, as we will show below, it is not a simple NI
but an axionic insulator (AI) with θ ̸= 0,π . Furthermore, the
FM fluctuations in the AI lead to a dynamical axion field.
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FIG. 2. (a) Phase diagram of the proposed magnetic TI superlat-
tice with two variables: ts and tn. An AI phase emerges with nonzero
θ . When ma > mb, the phase diagram will be AI phase only (not
shown). (b) Typical value of θ as a function of tn − ts in the AI phase,
where the parameter is set as tn + ts = 1.
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spin at the position xi , ν = c,m denotes the Cr and Mn,
respectively, and s = σ/2 is the local electron spin. The
main advantage of such a superlattice is the two types of
magnetic ions have opposite signs of exchange-coupling
parameters in TI materials, namely, Jm < 0 and Jc > 0. This
is experimentally verified by opposite signs of the anomalous
Hall conductance in the insulating regime of Mn-doped [22]
and Cr-doped [23] Bi2Te3 family materials. Therefore, a
uniform magnetization in the superlattice will induce opposite
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H =
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+ tsτ
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ck∥j , (2)

where i and j label distinct magnetic TI layers, σβ and τβ

(β = x,y,z) are Pauli matrices acting on the spin and the
top/bottom surface of the parent TI layer, respectively. The
first term in the Hamiltonian describes the top and bottom
surface states of a parent TI layer, where a single 2D Dirac
node is considered for Bi2Te3 family materials [24]. vF is
the Fermi velocity. k∥ = (kx,ky) is the in-plane momentum.
The second and third terms describe the Zeeman-type spin
splitting for surface states induced by the ferromagnetic
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z axis, where ma = ('c − 'm)/2 is the staggered Zeeman
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Hydrogen atom of magnetic TI: MnBi2Te4

2

FIG. 1. Crystal structure and magnetic structure. (a), The
unit cell of antiferromagnetic MnBi2Te4 consists of two sep-
tuple layers. The red arrows represent the spin moment of
Mn atom. The green arrow denotes for the half translation
operator ⌧1/2. (b), Schematic top view along the z-direction.
The triangle lattice in one septuple layer has three di↵erent
positions, denoted as A, B and C. The dotted green line is
used for the (011) plane. (c), The unit cell of ferromagnetic
MnBi2Te4 has one septuple layer. (d), The schematic of the
(011) plane, with the blue balls denoting Mn atoms. (e), The
total energy for di↵erent magnetic ordered states obtained
from first-principles calculations.

AFM1 (the magnetic ground state) and FM1 (possibly
realized through an external magnetic field) states.

Firstly we investigate the magnetic ground state with
the AFM1 order. The band structures of AFM1 state
without and with spin-orbit coupling (SOC) are shown
in Fig. 2(a) and 2(b), respectively. The time-reversal
symmetry ⇥ is broken, however, a combined symmetry
S = ⇥⌧1/2 is preserved, where ⌧1/2 is the half transla-
tion operator connecting nearest spin-up and -down M-
n atomic layers, marked in Fig. 1(a). The antiunitary
operator S could also lead to a Z2 topological invari-
ant [29], which is well defined on the Brillouin-zone plane
with k · ⌧1/2 = 0. One can see an anti-crossing feature
around the � point from the band inversion, suggesting
that MnBi2Te4 might be topologically nontrivial. Since
the inversion symmetry I is still preserved in this case,
the parity is well defined at time-reversal-invariant mo-
menta (TRIM) in the Brillouin zone, and the Fu and
Kane method [46] can be employed to calculate the Z2

invariant. Here we only need consider the four TRIM (�
and three F ) with Ḡ·⌧1/2 = n⇡. As expected, by turning
on SOC, the parity of one occupied band is changed at
� point from the band inversion between the |P1+

z

i of Bi
and the |P2�

z

i of Te, schematically shown in Fig. 2(d),
whereas the parity remains unchanged for all occupied
bands at the other three momenta F (see Fig. 2(e)), so
the Z2 invariant is obtained to be 1. We also employ the
Willson loop method [47] to confirm the Z2 invariant in
Fig. 2(f), concluding that antiferromagnetic MnBi2Te4 is
an antiferromagnetic topological insulator with Z2 = 1.

FIG. 2. Electronic structure of AFM1 MnBi2Te4. (a),(b),
The band structure of AFM1 state without (a) and with (b)
SOC. (b), The bands are two-fold degenerate due to conserved
I and S. (c), Brillouin zone of MnBi2Te4. The four inequiva-
lent TRIM are �(0, 0, 0), L(⇡, 0, 0), F (⇡,⇡, 0) and Z(⇡,⇡,⇡).
(d), Schematic diagram of the band inversion at the � point.
The green dashed line represents the Fermi level. (e), The
parity product at the TRIM (� and 3F ) with Ḡ · ⌧1/2 = n⇡.
The parity product is ‘�’ at � point, and the topological in-
variant Z2 is 1. (f), The Wannier charge centers (WCC) is
calculated in the plane with � and 3F , confirming Z2 = 1.

Especially, a large energy gap of about 0.2eV is obtained
in Fig. 2(b).

The existence of topological surface states is one of the
most important properties of the topological insulators.
However, the topological insulator state in antiferromag-
netic MnBi2Te4 protected by S symmetry is topological
in a weaker sense than the strong topological insulator
protected by ⇥ symmetry, which manifests in that the
existence of gapless surface state depends on the surface
plane. As shown in Fig. 4(a) and 4(c), there is gapped
surface states on the (111) surface accompanied by a tri-
angular Fermi surface, for S symmetry is broken. Only
on the S symmetry preserving surfaces such as (011) sur-
face, the gapless surface states are topological protected.
As shown in Fig. 4(b), topological surface state forms a
single Dirac-cone-type dispersion at the � point on the
(011) surface.

For the FM1 state of MnBi2Te4, the band structures
without and with the SOC e↵ect are shown in Fig. 3.
When the SOC e↵ect is included, MnBi2Te4 is a fer-
romagnetic insulator with the experimental lattice con-
stants (a0, c0), shown in Fig. 3(b). Interestingly, we
find that the band structure is sensitive with the lat-
tice constants. When we slightly extend the lattice con-
stants, it first becomes a type-II Weyl semimetal with
(1.005a0, 1.005c0) and then becomes a minimal ideal
Weyl semimetal with (1.01a0, 1.01c0), hosting two Weyl
points at the Fermi level without other bulk bands mix-
ing, shown in Fig. 3(c)-(d). This is the first minimal ide-
al Weyl semimetal discovered in realistic materials. The
Willson loop calculations, shown in Fig. 3(e) and 3(f),
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Topological states of quantum matter have attracted great attention in condensed matter physics and
materials science. The study of time-reversal-invariant topological states in quantum materials has made
tremendous progress. However, the study of magnetic topological states falls much behind due to the
complex magnetic structures. Here, we predict the tetradymite-type compound MnBi2Te4 and its related
materials host topologically nontrivial magnetic states. The magnetic ground state of MnBi2Te4 is an
antiferromagetic topological insulator state with a large topologically nontrivial energy gap (∼0.2 eV). It
presents the axion state, which has gapped bulk and surface states, and the quantized topological
magnetoelectric effect. The ferromagnetic phase ofMnBi2Te4 might lead to aminimal idealWeyl semimetal.
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The discovery of time-reversal-invariant (TRI) topologi-
cal insulators (TIs) [1–4] brings the opportunity to realize a
large family of exotic topological phenomena through
magnetically gapping the topological surface states (SSs)
[5–36]. Tremendous efforts have been made to introduce
magnetism into TRI TIs. One successful example is the first
realization of the quantum anomalous Hall (QAH) effect in
Cr-doped ðBi; SbÞ2Te3 TI thin films [28,37,38]. Aside from
the dilute magnetic TIs, intrinsic magnetic materials are
expected to provide a clean platform to study magnetic
topological states with new interesting topological phe-
nomena. Some magnetic topological states have been
theoretically proposed [39], such as antiferromagnetic
(AFM) TI [29], a dynamical axion field [40], magnetic
Dirac semimetals [32,33,41,42], and Weyl semimetals
[30,31,43]. Though a few magnetic Weyl semimetals were
experimentally observed [44], the study of magnetic
topological states falls much behind in experiments due
to complex magnetic structure. Therefore, realistic intrinsic
magnetic topological materials are highly desired. The
class of MnBi2Te4 materials predicted in this Letter provide
an ideal platform for emergent magnetic topological
phenomena, such as AFM TI, topological axion state with
quantized topological magnetoelectric effect (TME), min-
imal ideal Weyl semimetal, QAH effect, two-dimensional
ferromagnetism, and so on.
The tetradymite-type compounds XA2B4, also written as

XBA2B3 with X ¼ Ge, Sn, Pb or Mn, A ¼ Sb or Bi, and
B ¼ Se or Te, crystallize in a rhombohedral crystal struc-
ture with the space group D5

3d (No. 166) with seven atoms
in one unit cell. We take MnBi2Te4 as an example, which
has been successfully synthesized in experiments [45].

It has layered structures with a triangle lattice, shown in
Fig. 1. The trigonal axis (threefold rotation symmetry C3z)
is defined as the z axis, a binary axis (twofold rotation
symmetry C2x) is defined as the x axis and a bisectrix axis
(in the reflection plane) is defined as the y axis for the
coordinate system. The material consists of seven-atom
layers (e.g., Te1-Bi1-Te2-Mn-Te3-Bi2-Te4) arranged along
the z direction, known as a septuple layer (SL), which could

FIG. 1. Crystal structure and magnetic structure. (a) The unit
cell of AFM MnBi2Te4 consists of two SLs. The red arrows
represent the spin moment of Mn atom. The green arrow denotes
for the half translation operator τ1=2. (b) Schematic top view along
the z direction. The triangle lattice in one SL has three different
positions, denoted as A, B, and C. The dashed green line is used
for the (011) plane. (c) The unit cell of FMMnBi2Te4 has one SL.
(d) The schematic of the (011) plane, with the blue balls denoting
Mn atoms. (e) The calculated total energy for different magnetic
ordered states.
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be simply viewed as the intergrowth of (111) plane of rock-
salt structure MnTe within the quintuple layer of TI Bi2Te3
[see Fig. 1(a) and (c)] [10]. The coupling between different
SLs is the van der Waals type. The existence of inversion
symmetry I, with the Mn site as the inversion center,
enables us to construct eigenstates with definite parity.
First-principles calculations are employed to investigate

the electronic structure of MnBi2Te4, where the detailed
methods can be found in the Supplemental Material [46].
We find that each Mn atom in MnBi2Te4 tends to have half-
filled d orbitals. We performed total energy calculations for
different magnetic phases for the three-dimensional
MnBi2Te4, and the results are listed in Fig. 1(e), showing
that the A-type AFM phase with the out-of-plane easy axis,
denoted as AFM1 [seen in Fig. 1(a)], is the magnetic
ground state. It is ferromagnetic (FM) within the xy plane in
each SL, and AFM between neighbor SLs along the z
direction, consisting with the previous report [49]. The total
energy of the A-type AFM phase AFM2 with the in plane
easy axis is slightly higher than that of AFM1, and much
lower than that of FM phase FM1 with the out of plane easy
axis, which indicates that the magnetic anisotropy is
weaker than the effective magnetic exchange interaction
between Mn atoms in neighbor SLs. The FM phase FM2
with in plane easy axis has the highest energy. The
Goodenough-Kanamori rule is the key to understand the
AFM1 ground state. For the in plane Mn atomic layer, two
nearest Mn atoms are connected through Te atom with the
bond “Mn─Te─Mn,” whose bonding angle is close to
90 degree, so the superexchange interaction is expected
to induce FM ordering. Contrarily, Mn atoms between
neighbor atomic layers are coupled through the bond
“Mn─Te─Bi─Te∶Te─Bi─Te─Mn,” considered as an
effective bond “Mn─X─Mn” with a 180 degree bonding
angle, where AFM ordering is induced. In the following
discussion, we would focus on the AFM1 (the magnetic
ground state) and FM1 (possibly realized through an
external magnetic field) states.
First, we investigate the AFM1 ground state. The band

structures without and with spin-orbit coupling (SOC) are
shown in Figs. 2(a) and 2(b), respectively. The time-
reversal symmetry Θ is broken; however, a combined
symmetry S ¼ Θτ1=2 is preserved, where τ1=2 is the half
translation operator connecting nearest spin-up and -down
Mn atomic layers, marked in Fig. 1(a). The operator S is
antiunitary with S2 ¼ −e−ik·τ1=2 . S2 ¼ −1 on the Brillouin-
zone (BZ) plane k · τ1=2 ¼ 0. Therefore, similar to Θ in
TRI TI, S could also lead to a Z2 classification [29], where
the topological invariant is well defined on the BZ plane
with k · τ1=2 ¼ 0. One can see an anticrossing feature
around the Γ point from the band inversion, suggesting
that MnBi2Te4 might be topologically nontrivial. Since I is
still preserved, the Z2 invariant is simply determined by the
parity of the wave functions at TRI momenta (TRIM) in the
Brillouin zone [50]. Here we only need consider the four

TRIM (Γ and three F) with Ḡ · τ1=2 ¼ nπ. As expected, by
turning on SOC, the parity of one occupied band is changed
at Γ point from band inversion between the jP1þz i of Bi and
the jP2−z i of Te, schematically shown in Fig. 2(d), whereas
the parity remains unchanged for all occupied bands at the
other three momenta F [see Fig. 2(e)], so Z2 ¼ 1. We also
employ the Willson loop method [51] to confirm the Z2

invariant in Fig. 2(f), concluding that AFMMnBi2Te4 is an
AFM TI. Especially, we notice that a large energy gap of
about 0.2 eV is obtained in Fig. 2(b).
The existence of topological SSs is one of the most

important properties of TIs. However, the TI state in AFM
MnBi2Te4 protected by S is topological in a weaker sense
than the strong TI protected by Θ, which manifests in that
the existence of gapless SS depends on the surface plane.
As shown in Figs. 4(a) and 4(c), there is gapped SSs on the
(111) surface accompanied by a triangular Fermi surface,
for S is broken. As shown in Fig. 4(b), only on the S-
preserving surfaces such as (011) surface, the gapless SSs
are topologically protected which forms a single Dirac-
cone-type dispersion at Γ.
For the FM1 state of MnBi2Te4, the band structures

without and with SOC effect are shown in Fig. 3. MnBi2Te4
is a FM insulator with the experimental lattice constant (a0,
c0), shown in Fig. 3(b). Interestingly, we find that the band
structure is sensitive to the lattice constant. When the lattice
constant is slightly extended, it first becomes a type-II Weyl
semimetal with (1.005a0; 1.005c0) and then becomes a
minimal ideal Weyl semimetal with (1.01a0; 1.01c0), host-
ing two Weyl points at the Fermi level without other bulk
bands mixing, shown in Figs. 3(c) and 3(d). The Willson
loop calculations, shown in Figs. 3(e) and 3(f), suggest
that the Chern number C ¼ 1 at kz ¼ 0 plane, and C ¼ 0 at

FIG. 2. Electronic structure of AFM1 MnBi2Te4. (a) and
(b) The band structure of AFM1 state without (a) and with
(b) SOC. (b) The bands are twofold degenerate due to conserved
I and S. (c) Brillouin zone of MnBi2Te4. The four inequivalent
TRIM are Γð0; 0; 0Þ, Lðπ; 0; 0Þ, Fðπ; π; 0Þ, and Zðπ; π; πÞ.
(d) Schematic diagram of the band inversion at Γ. The green
dotted line represents the Fermi level. (e) The parity product at the
TRIM with Ḡ · τ1=2 ¼ nπ. (f) The Wannier charge centers (WCC)
is calculated in the plane with Γ and 3F, confirming Z2 ¼ 1.
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Model for AFM topological insulator MnBi2Te4
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) with j = ↵,�. By fitting the en-
ergy spectrum of the e↵ective Hamiltonian with that of
the first-principles calculation, the parameters in the ef-
fective model can be determined, which can be found in
the Supplementary Material [48]. The M1,2 terms char-
acterize the Zeeman coupling with the magnetized Mn
orbitals, and in general M1 6= M2 denotes the di↵erent
e↵ective g-factor of |P1+

z

, " (#)i and |P2�
z

, " (#)i.
The AFM1 state breaks ⇥ but preserves S = 12⇥2 ⌦

i�

yKe

ik·⌧1/2 , and the unit cell doubles compared to FM1
state. One can construct the e↵ective Hamiltonian for
AFM1 from the model for FM1 state by considering t-
wo septuple layers with opposite magnetization, which
will include eight bands. For simplicity, we obtain the
four-band model similar to the above analysis. From
band structure analysis, the four bands close the Fer-
mi energy in the AFM1 state are the new bonding state
|P10+

z

, " (#)i of four Bi layers and the antibonding state
|P20�

z

, " (#)i of four Te layers (two Te1 and two Te4 in
neighboring septuple layers). In the basis of (|P10+
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, "i,
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, #i, |P20�
z

, #i), by requiring the symme-
tries I, C3z and S, we get the e↵ective Hamiltonian for
AFM1 which has the same expression as HNM(k) but
with di↵erent parameters, namely
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). The fitting parameters are
listed in the Supplementary Material [48]. We notice that
M

0
0 < 0 and B

0
1, B

0
2 > 0, which correctly characterizes the

band inversion around k = 0 and the topologically non-
trivial nature of the system. The formation of the model
in Eq. (3) is the same as that for topological insulator in
Bi2Se3 [10].

Axion state and topological response. Such axion state
has gapped bulk and surface states, and nonzero topo-
logical electromagnetic response described by the topo-
logical ✓ term, S

✓

= (✓/2⇡)(↵/2⇡)
R
d

3
xdtE ·B. Here, E

and B are the conventional electromagnetic fields inside
the insulator, ↵ = e

2
/~c is the fine-structure constant, e

is the charge of an electron, and ✓ is the dimensionless
pseudoscalar parameter describing the axion insulator.
The axion state can be obtained by gapping all the S-
preserving surfaces from AFM1 MnBi2Te4, which can be
simply obtained by growing realistic materials without
any S-preserving surfaces or applying a small in plane
magnetic field. Physically, ✓ has an explicit microscop-
ic expression of the momentum space Chern-Simons for-
m [34, 49]
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, Aµ%

i

(k) = �ihuµ

k|@i|u%

ki is the mo-
mentum space non-abelian gauge field, with |uµ

ki and
|u%

ki referring to the periodic part of the Bloch function
of the occupied bands. All physical quantities in the
bulk depend on ✓ only modulo 2⇡. As ✓ is odd under
time-reversal and parity operation, only time-reversal-
and parity-breaking perturbations can induce a change
of ✓. The Mn sites always act as the inversion cen-
ter, therefore, ✓ of the axion state is the same as that
of AFM1 state, where ✓ = ⇡ is guaranteed by the S
symmetry. Such axion state emerged in MnBi2Te4 pro-
vides an ideal platform for quantized topological mag-
netoelectric e↵ect [34, 50], which has not been exper-
imentally observed, and is di↵erent from proposed ax-
ion state in the ferromagnet-topological insulator het-
erostructure where the gapless surface states on side sur-
faces are hard to eliminate [50–52]. Experimentally, such
quantized topological magnetoelectric e↵ect can be ob-
served by measuring the induction of a parallel polariza-
tion current when an ac magnetic field is applied [50],
which is J = (✓/⇡)(e2/2h)(@B

x

/@t)`d. Here, d and `

are the thickness and width of the MnBi2Te4 sample.
For an estimation, taking B

x

= B0e
�i!t, B0 = 10 G,

!/2⇡ = 1 GHz, d = 50 nm, ✓ = ⇡, and ` = 400 µm, we
have J = �iJ0e

�i!t with J0 = 2.22 nA, in the range
accessible by experiments.

It is worth mentioning that the Néel order in AFM1
state is essentially di↵erent from the Néel order in the
dynamical axion field proposed in Ref. [40]. In the latter
case, the Néel order breaks the time-reversal symmetry
⇥ and parity I, but conserves I⇥. The magnetic fluc-
tuation of the Néel order leads to linear contribution to
the fluctuation of axion field, and the static ✓ deviates
from ⇡. While in the case of AFM1 MnBi2Te4, the Néel
order conserves both I and S, thus the static ✓ = ⇡,
and to the linear order, the magnetic fluctuation has no
contribution to the dynamics of axion field.

Materials. Other tetradymite-type compounds
XBi2Te4, XBi2Se4 and XSb2Te4 (X = Mn or Eu), if
with the same rhombohedral crystal structure, are al-
so promising candidates to host magnetic topological s-
tates similar to MnBi2Te4. Actually, tetradymite-type
compounds XB·A2B3 belong to a large class of ternary
chalcogenides materials (XB)

n

·(A2B3)m with X = (Ge,
Sn or Pb), A = (Sb or Bi) and B = (Se or Te), most
of which were found to be topological insulators [53].
Interestingly, (GeTe)

n

(Sb2Te3)m and (GeTe)
n

(Bi2Te3)m
have been widely studied as phase change memory ma-
terials [54]. By tuning the layer index m and n, we can
play with the crystal structure, the topological proper-
ty, and the magnetic property of the series of materials
(XB)

n

·(A2B3)m, which opens a broad way to study e-
mergent phenomena of magnetic topological states.
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kz ¼ π plane,which is consist with the idealWeyl semimetal
in Fig. 3(d). Furthermore, the SSs of FM1 state on different
typical surfaces are calculated. In Fig. 4(d), bulk states
projected on the (111) surface have no energy gap, for the
twoWeyl points are exactly projected to the surface Γ̄ point.
In Fig. 4(e) and 4(f), one can clearly see the surface Fermi
arcs connecting to the two ideal Weyl points are separated
(∼0.06 Å−1).
Low-energy effective model.—As the topological nature

is determined by the physics near the Γ point, a simple
effective Hamiltonian can be written down to characterize
the low-energy long-wavelength properties of the system.
We start from the four low-lying states jP1þz ;↑ð↓Þi and
jP2−z ;↑ð↓Þi at the Γ point. Here the superscripts “þ,” “−”
stand for the parity of the corresponding states. Without the
SOC effect, around the Fermi energy, the bonding state
jP1þz i of two Bi layers stays above of the antibonding state
jP2−z i of two Te layers (Te1 and Te4 in SLs). As shown in
Fig. 2(d), the SOC mixes spin and orbital angular momenta
while preserving the total angular momentum, and
jP1þz ;↑ð↓Þi state is pushed down and the jP2−z ;↑ð↓Þi
state is pushed up, leading to the band inversion and parity
exchange. In the nonmagnetic state, the symmetries of the
system are Θ, I , C3z and C2x. In the basis of (jP1þz ;↑i,
jP2−z ;↑i, jP1þz ;↓i, jP2−z ;↓i), the representation of
symmetry operations is given by Θ ¼ 12×2 ⊗ iσyK,
I ¼ τz ⊗ 12×2, C3z ¼ exp½12×2 ⊗ iðπ=3Þσz& and C2x ¼
exp½τz ⊗ iðπ=2Þσx&, where K is the complex conjugation

operator, and σx;y;z and τx;y;z denote the Pauli matrices in the
spin and orbital space, respectively. By requiring these four
symmetries and keeping only the terms up to quadratic
order in k, we obtain the following generic form of the
effective Hamiltonian for nonmagnetic state

HNðkÞ¼ ϵ0ðkÞþ

0
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2
z þ Bγ

2ðk2x þ k2yÞ.
The FM1 state breaks Θ and C2x but preserves the

combined C2xΘ; therefore the effective Hamiltonian for
FM1 is obtained by adding perturbative term δHFM1ðkÞ
respecting the corresponding symmetries into HNðkÞ,
which is

δHFM1ðkÞ ¼

0
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2ðk2x þ k2yÞ with j ¼ α, β. By fitting the
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FIG. 3. Electronic structure of FM1 MnBi2Te4. (a) Band
structure for FM1 state without SOC. The dashed line indicates
the Fermi level. The red (blue) lines are spin-up (-down) bands.
(b)–(d) Band structures for FM1 state with SOC are calculated
by the LDAþ U (U ¼ 3 eV) functional with experimental
lattice constants (a0, c0) in (b), extended lattice constants
(1.005a0; 1.005c0) in (c) and (1.01a0; 1.01c0) in (d), respectively.
The system has the transition from FM insulator to type-II Weyl
semimetal, and finally to ideal Weyl semimetal. (e) and (f) The
evolution of WCC along the kx direction in the kz ¼ 0 plane (e)
and in the kz ¼ π plane (f). The WCCs cross the reference
horizontal line once in (e), indicating the Chern number C ¼ 1 in
the kz ¼ 0 plane. Oppositely, the WCCs don’t cross the
reference line in (f), indicating the Chern number C ¼ 0 in the
kz ¼ π plane.

FIG. 4. Surface states. (a) and (b) Energy and momentum
dependence of the local density of states (LDOS) for AFM1
phase on the (111) and (011) surfaces, respectively. In (a), The
SSs on (111) surface are fully gapped due to the S symmetry
broken. In (b), The gapless SSs can be seen at the Γ point with a
linear dispersion in the bulk gap on the S-preserving (011)
surface. (c) Fermi surface on the (111) surface at the energy level
E0 in (a) presents the triangle shape, different from the hexagonal
shape in TI Bi2Se3. (d) and (e), Energy and momentum
dependence of the LDOS for FM1 phase on the (111) and
(011) surfaces, respectively. In (e), the two Weyl points are seen
along the kz direction. (f) There are two Fermi arc connecting the
Weyl points W1 and W2, indicating the ideal Weyl semimetal
feature.

PHYSICAL REVIEW LETTERS 122, 206401 (2019)

206401-3



13

QAH and Zero plateau in MnBi2Te4 odd and even layers

Zhang,	Wang	et	al,	Phys.	Rev.	Lett.	122,	206401	(2019)

Even	layer,	conserved	

Supplementary Material for

Topological axion states in magnetic insulator MnBi2Te4 with the quantized

magnetoelectric e↵ect

Dongqin Zhang,1 Minji Shi,1 Tongshuai Zhu,1 Dingyu Xing,1, 2 Haijun Zhang,1, 2 and Jing Wang3, 2, 4

1
National Laboratory of Solid State Microstructures,

School of Physics, Nanjing University, Nanjing 210093, China

2
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

3
State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China

4
Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China

(Dated: October 19, 2018)

I. FIRST-PRINCIPLES CALCULATIONS OF
ELECTRONIC AND MAGNETIC PROPERTIES

The first-principles calculations are carried out in
the framework of the generalized gradient approxima-
tion (GGA) functional of the density functional theory
through employing the Vienna ab initio simulation pack-
age (VASP) with projector augmented wave pseudopo-
tentials1,2. The experimental lattice constants (a0 =
4.334 Å, and c0 = 40.91 Å) are taken, and inner positions
are obtained through full relaxation with a total energy
tolerance 10�5 eV. The SOC e↵ect is self-consistently
included. By considering the transition metal Mn in
MnBi2Te4, LDA+U functional with U = 3 eV for Mn
d orbitals for all the results in this work.

II. FITTING PARAMETERS OF LOW-ENERGY
EFFECTIVE MODELS.

For the FM1 state, C = 0.0539 eV, D1 =
�4.0339 eVÅ2, D2 = 4.4250 eVÅ2, A1 = 1.3658 eVÅ,
A2 = 1.9985 eVÅ, M�

0 = 0.0307 eV, B�
1 = 4.2857 eVÅ2,

B�
2 = 8.3750 eVÅ2. A3 = �0.5450 eVÅ, A4 =

1.1384 eVÅ, M↵
0 = �0.1078 eV, B↵

1 = 0.6232 eVÅ2,
B↵

2 = 0.6964 eVÅ2, M�
0 = �0.0880 eV, B�

1 =

2.7678 eVÅ2, and B�
2 = 1.9650 eVÅ2.

For the AFM1 state, C 0 = �0.0048 eV, D0
1 =

2.7232 eVÅ2, D0
2 = 17.0000 eVÅ2, A0

1 = 2.7023 eVÅ,
A0

2 = 3.1964 eVÅ, M 0
0 = �0.1165 eV, B0

1 =
11.9048 eVÅ2, and B0

2 = 9.4048 eVÅ2.

The e↵ective model for AFM1 is the same as that for
topological insulator in Bi2Se3. Therefore, the 2D band
inversion remains when thin film MnBi2Te4 with AFM1
phase exceeds 4 septuple layers. The band inversion in
2D is determined by the condition

�
M 0

0 +B0
1hk2zin

�
B0

2 <
0. Here n is the subband index, and hk2zin = (n⇡/d)2

with d the thickness of thin film. Interestingly, for thick-
ness with even number of septuple layers larger than four,
although band inversion exists, the Chern number is zero
due to conserved I⇥. For thickness with odd number of
septuple layers larger than 4, ⇥I is also broken and the
system has spin polarized band inversion, which lead to
QAH e↵ect.

1 G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
2 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
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further propose a device setup to eliminate nontopological contributions from the side surface.

DOI: 10.1103/PhysRevB.92.081107 PACS number(s): 73.43.−f, 73.20.−r, 85.75.−d

The search for topological quantum phenomena has
become an important goal in condensed matter physics.
Topological phenomena in physical systems are determined
by topological structures and are thus universal and robust
against perturbations, and the electromagnetic response is
usually exactly quantized [1]. Two well-known examples of
topological quantum phenomena are the flux quantization in
superconductors [2] and Hall conductance quantization in the
quantum Hall effect (QHE) [3]. The remarkable observation
of such topological phenomena is that the quantization is
exact, which provide the precise values of fundamental physics
constants, such as Planck’s constant h [4].

The recent discovery of the time-reversal (T ) invariant
(TRI) topological insulator (TI) brings the opportunity to
study a large family of new topological phenomena [5,6].
The electromagnetic response of a three-dimensional (3D)
insulator is described by the topological θ term [7–9] of the
form

Sθ = θ

2π

e2

h

∫
d3xdtE · B, (1)

together with the ordinary Maxwell terms. Here, E and B are
the conventional electromagnetic fields inside the insulator,
e is the charge of an electron, and θ is the dimensionless
pseudoscalar parameter describing the insulator, which refers
to the axion field in particle physics [10]. Under the periodic
boundary condition, all physical quantities are invariant if θ is
shifted by integer multiples of 2π . Therefore, all TRI insulators
are described by either θ = 0 or θ = π (modulo 2π ). TIs are
defined by θ = π , which cannot be connected continuously to
trivial insulators, defined by θ = 0, by TRI perturbations. With
an open boundary condition, the effective action is reduced to a
(2+1)D Chern-Simons term on the surface, which describes a
surface QHE with half-quantized surface Hall conductance [7].
Such a topological θ term with a universal value of θ = π in
TIs leads to a magnetoelectric effect with coefficient quantized
in units of e2/2h, known as the topological magnetoelectric
effect (TME), i.e., an electric field can induce a magnetic
polarization, whereas a magnetic field can induce an electric
polarization. To obtain the quantized TME in TIs, as is first
suggested in Ref. [7], one must fulfill the following stringent

requirements. First, introduce a T -breaking surface gap by
ferromagnetic (FM) ordering, where the magnetization of FM
points inward or outward from the surface. Second, finely
tune the Fermi level into the magnetically induced surface gap
and keep the bulk truly insulating. Third, the film of the TI
material should be thick enough to eliminate the finite-size
effect, therefore the TME is exactly quantized. Several other
theoretical proposals [11–14] have been made to realize the
the TME; however, observing the TME in TIs experimentally
is still challenging.

In this Rapid Communication, we propose to realize the
TME effect in the newly discovered quantum anomalous Hall
(QAH) state [15,16]. Recently, a new zero-plateau QAH state
in a magnetic TI has been theoretically predicted [17] and
experimentally realized [18,19]. The magnetic TI studied in the
QAH experiment develops robust FM at low temperature. In
the magnetized states, the magnetic domains of the material are
aligned to the same direction, and the system is in a QAH state
with a single chiral edge state propagating along the sample
boundary, where the Hall conductance σxy is quantized to
be ±e2/h. The zero-plateau state, on the contrary, appears
around the coercivity when the magnetic domains reverse,
where σxy shows a well-defined zero plateau over a range
of magnetic field around coercivity while the longitudinal
conductance σxx → 0 [shown in Fig. 1(a)]. In such a state,
the Fermi level is in the magnetization induced surface gap,
fulfilling the first two conditions above, providing a good
platform to observe the TME effect, as we will discuss in detail
below. However, due to a finite thickness in magnetic TIs, the
TME is nonquantized. Therefore, we further propose to realize
the quantized TME effect in the zero-plateau QAH state of the
FM-TI-FM heterostructure as shown in Fig. 1(b), where an
in-plane ac magnetic field induces an electric current in the
same direction, or an in-plane electric field induces a magnetic
field. The finite-size effect is also studied numerically, where
the TME coefficient is shown to converge to a quantized
value when the thickness of the TI film increases. Finally, we
propose a device setup where the nontopological contribution
from the side surface is negligible.

The TME described by the topological θ term implies that a
quantized magnetic polarization is induced by an electric field,

1098-0121/2015/92(8)/081107(5) 081107-1 ©2015 American Physical Society
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The search for topological quantum phenomena has
become an important goal in condensed matter physics.
Topological phenomena in physical systems are determined
by topological structures and are thus universal and robust
against perturbations, and the electromagnetic response is
usually exactly quantized [1]. Two well-known examples of
topological quantum phenomena are the flux quantization in
superconductors [2] and Hall conductance quantization in the
quantum Hall effect (QHE) [3]. The remarkable observation
of such topological phenomena is that the quantization is
exact, which provide the precise values of fundamental physics
constants, such as Planck’s constant h [4].

The recent discovery of the time-reversal (T ) invariant
(TRI) topological insulator (TI) brings the opportunity to
study a large family of new topological phenomena [5,6].
The electromagnetic response of a three-dimensional (3D)
insulator is described by the topological θ term [7–9] of the
form

Sθ = θ

2π

e2

h

∫
d3xdtE · B, (1)

together with the ordinary Maxwell terms. Here, E and B are
the conventional electromagnetic fields inside the insulator,
e is the charge of an electron, and θ is the dimensionless
pseudoscalar parameter describing the insulator, which refers
to the axion field in particle physics [10]. Under the periodic
boundary condition, all physical quantities are invariant if θ is
shifted by integer multiples of 2π . Therefore, all TRI insulators
are described by either θ = 0 or θ = π (modulo 2π ). TIs are
defined by θ = π , which cannot be connected continuously to
trivial insulators, defined by θ = 0, by TRI perturbations. With
an open boundary condition, the effective action is reduced to a
(2+1)D Chern-Simons term on the surface, which describes a
surface QHE with half-quantized surface Hall conductance [7].
Such a topological θ term with a universal value of θ = π in
TIs leads to a magnetoelectric effect with coefficient quantized
in units of e2/2h, known as the topological magnetoelectric
effect (TME), i.e., an electric field can induce a magnetic
polarization, whereas a magnetic field can induce an electric
polarization. To obtain the quantized TME in TIs, as is first
suggested in Ref. [7], one must fulfill the following stringent

requirements. First, introduce a T -breaking surface gap by
ferromagnetic (FM) ordering, where the magnetization of FM
points inward or outward from the surface. Second, finely
tune the Fermi level into the magnetically induced surface gap
and keep the bulk truly insulating. Third, the film of the TI
material should be thick enough to eliminate the finite-size
effect, therefore the TME is exactly quantized. Several other
theoretical proposals [11–14] have been made to realize the
the TME; however, observing the TME in TIs experimentally
is still challenging.

In this Rapid Communication, we propose to realize the
TME effect in the newly discovered quantum anomalous Hall
(QAH) state [15,16]. Recently, a new zero-plateau QAH state
in a magnetic TI has been theoretically predicted [17] and
experimentally realized [18,19]. The magnetic TI studied in the
QAH experiment develops robust FM at low temperature. In
the magnetized states, the magnetic domains of the material are
aligned to the same direction, and the system is in a QAH state
with a single chiral edge state propagating along the sample
boundary, where the Hall conductance σxy is quantized to
be ±e2/h. The zero-plateau state, on the contrary, appears
around the coercivity when the magnetic domains reverse,
where σxy shows a well-defined zero plateau over a range
of magnetic field around coercivity while the longitudinal
conductance σxx → 0 [shown in Fig. 1(a)]. In such a state,
the Fermi level is in the magnetization induced surface gap,
fulfilling the first two conditions above, providing a good
platform to observe the TME effect, as we will discuss in detail
below. However, due to a finite thickness in magnetic TIs, the
TME is nonquantized. Therefore, we further propose to realize
the quantized TME effect in the zero-plateau QAH state of the
FM-TI-FM heterostructure as shown in Fig. 1(b), where an
in-plane ac magnetic field induces an electric current in the
same direction, or an in-plane electric field induces a magnetic
field. The finite-size effect is also studied numerically, where
the TME coefficient is shown to converge to a quantized
value when the thickness of the TI film increases. Finally, we
propose a device setup where the nontopological contribution
from the side surface is negligible.

The TME described by the topological θ term implies that a
quantized magnetic polarization is induced by an electric field,
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I. FIRST-PRINCIPLES CALCULATIONS OF
ELECTRONIC AND MAGNETIC PROPERTIES

The first-principles calculations are carried out in
the framework of the generalized gradient approxima-
tion (GGA) functional of the density functional theory
through employing the Vienna ab initio simulation pack-
age (VASP) with projector augmented wave pseudopo-
tentials1,2. The experimental lattice constants (a0 =
4.334 Å, and c0 = 40.91 Å) are taken, and inner positions
are obtained through full relaxation with a total energy
tolerance 10�5 eV. The SOC e↵ect is self-consistently
included. By considering the transition metal Mn in
MnBi2Te4, LDA+U functional with U = 3 eV for Mn
d orbitals for all the results in this work.

II. FITTING PARAMETERS OF LOW-ENERGY
EFFECTIVE MODELS.

For the FM1 state, C = 0.0539 eV, D1 =
�4.0339 eVÅ2, D2 = 4.4250 eVÅ2, A1 = 1.3658 eVÅ,
A2 = 1.9985 eVÅ, M�

0 = 0.0307 eV, B�
1 = 4.2857 eVÅ2,

B�
2 = 8.3750 eVÅ2. A3 = �0.5450 eVÅ, A4 =

1.1384 eVÅ, M↵
0 = �0.1078 eV, B↵

1 = 0.6232 eVÅ2,
B↵

2 = 0.6964 eVÅ2, M�
0 = �0.0880 eV, B�

1 =

2.7678 eVÅ2, and B�
2 = 1.9650 eVÅ2.

For the AFM1 state, C 0 = �0.0048 eV, D0
1 =

2.7232 eVÅ2, D0
2 = 17.0000 eVÅ2, A0

1 = 2.7023 eVÅ,
A0

2 = 3.1964 eVÅ, M 0
0 = �0.1165 eV, B0

1 =
11.9048 eVÅ2, and B0

2 = 9.4048 eVÅ2.

The e↵ective model for AFM1 is the same as that for
topological insulator in Bi2Se3. Therefore, the 2D band
inversion remains when thin film MnBi2Te4 with AFM1
phase exceeds 4 septuple layers. The band inversion in
2D is determined by the condition

�
M 0

0 +B0
1hk2zin

�
B0

2 <
0. Here n is the subband index, and hk2zin = (n⇡/d)2

with d the thickness of thin film. Interestingly, for thick-
ness with even number of septuple layers larger than four,
although band inversion exists, the Chern number is zero
due to conserved I⇥. For thickness with odd number of
septuple layers larger than 4, ⇥I is also broken and the
system has spin polarized band inversion, which lead to
QAH e↵ect.

1 G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
2 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
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The search for topological quantum phenomena has
become an important goal in condensed matter physics.
Topological phenomena in physical systems are determined
by topological structures and are thus universal and robust
against perturbations, and the electromagnetic response is
usually exactly quantized [1]. Two well-known examples of
topological quantum phenomena are the flux quantization in
superconductors [2] and Hall conductance quantization in the
quantum Hall effect (QHE) [3]. The remarkable observation
of such topological phenomena is that the quantization is
exact, which provide the precise values of fundamental physics
constants, such as Planck’s constant h [4].

The recent discovery of the time-reversal (T ) invariant
(TRI) topological insulator (TI) brings the opportunity to
study a large family of new topological phenomena [5,6].
The electromagnetic response of a three-dimensional (3D)
insulator is described by the topological θ term [7–9] of the
form

Sθ = θ

2π

e2

h

∫
d3xdtE · B, (1)

together with the ordinary Maxwell terms. Here, E and B are
the conventional electromagnetic fields inside the insulator,
e is the charge of an electron, and θ is the dimensionless
pseudoscalar parameter describing the insulator, which refers
to the axion field in particle physics [10]. Under the periodic
boundary condition, all physical quantities are invariant if θ is
shifted by integer multiples of 2π . Therefore, all TRI insulators
are described by either θ = 0 or θ = π (modulo 2π ). TIs are
defined by θ = π , which cannot be connected continuously to
trivial insulators, defined by θ = 0, by TRI perturbations. With
an open boundary condition, the effective action is reduced to a
(2+1)D Chern-Simons term on the surface, which describes a
surface QHE with half-quantized surface Hall conductance [7].
Such a topological θ term with a universal value of θ = π in
TIs leads to a magnetoelectric effect with coefficient quantized
in units of e2/2h, known as the topological magnetoelectric
effect (TME), i.e., an electric field can induce a magnetic
polarization, whereas a magnetic field can induce an electric
polarization. To obtain the quantized TME in TIs, as is first
suggested in Ref. [7], one must fulfill the following stringent

requirements. First, introduce a T -breaking surface gap by
ferromagnetic (FM) ordering, where the magnetization of FM
points inward or outward from the surface. Second, finely
tune the Fermi level into the magnetically induced surface gap
and keep the bulk truly insulating. Third, the film of the TI
material should be thick enough to eliminate the finite-size
effect, therefore the TME is exactly quantized. Several other
theoretical proposals [11–14] have been made to realize the
the TME; however, observing the TME in TIs experimentally
is still challenging.

In this Rapid Communication, we propose to realize the
TME effect in the newly discovered quantum anomalous Hall
(QAH) state [15,16]. Recently, a new zero-plateau QAH state
in a magnetic TI has been theoretically predicted [17] and
experimentally realized [18,19]. The magnetic TI studied in the
QAH experiment develops robust FM at low temperature. In
the magnetized states, the magnetic domains of the material are
aligned to the same direction, and the system is in a QAH state
with a single chiral edge state propagating along the sample
boundary, where the Hall conductance σxy is quantized to
be ±e2/h. The zero-plateau state, on the contrary, appears
around the coercivity when the magnetic domains reverse,
where σxy shows a well-defined zero plateau over a range
of magnetic field around coercivity while the longitudinal
conductance σxx → 0 [shown in Fig. 1(a)]. In such a state,
the Fermi level is in the magnetization induced surface gap,
fulfilling the first two conditions above, providing a good
platform to observe the TME effect, as we will discuss in detail
below. However, due to a finite thickness in magnetic TIs, the
TME is nonquantized. Therefore, we further propose to realize
the quantized TME effect in the zero-plateau QAH state of the
FM-TI-FM heterostructure as shown in Fig. 1(b), where an
in-plane ac magnetic field induces an electric current in the
same direction, or an in-plane electric field induces a magnetic
field. The finite-size effect is also studied numerically, where
the TME coefficient is shown to converge to a quantized
value when the thickness of the TI film increases. Finally, we
propose a device setup where the nontopological contribution
from the side surface is negligible.

The TME described by the topological θ term implies that a
quantized magnetic polarization is induced by an electric field,

1098-0121/2015/92(8)/081107(5) 081107-1 ©2015 American Physical Society
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The search for topological quantum phenomena has
become an important goal in condensed matter physics.
Topological phenomena in physical systems are determined
by topological structures and are thus universal and robust
against perturbations, and the electromagnetic response is
usually exactly quantized [1]. Two well-known examples of
topological quantum phenomena are the flux quantization in
superconductors [2] and Hall conductance quantization in the
quantum Hall effect (QHE) [3]. The remarkable observation
of such topological phenomena is that the quantization is
exact, which provide the precise values of fundamental physics
constants, such as Planck’s constant h [4].

The recent discovery of the time-reversal (T ) invariant
(TRI) topological insulator (TI) brings the opportunity to
study a large family of new topological phenomena [5,6].
The electromagnetic response of a three-dimensional (3D)
insulator is described by the topological θ term [7–9] of the
form

Sθ = θ

2π

e2

h

∫
d3xdtE · B, (1)

together with the ordinary Maxwell terms. Here, E and B are
the conventional electromagnetic fields inside the insulator,
e is the charge of an electron, and θ is the dimensionless
pseudoscalar parameter describing the insulator, which refers
to the axion field in particle physics [10]. Under the periodic
boundary condition, all physical quantities are invariant if θ is
shifted by integer multiples of 2π . Therefore, all TRI insulators
are described by either θ = 0 or θ = π (modulo 2π ). TIs are
defined by θ = π , which cannot be connected continuously to
trivial insulators, defined by θ = 0, by TRI perturbations. With
an open boundary condition, the effective action is reduced to a
(2+1)D Chern-Simons term on the surface, which describes a
surface QHE with half-quantized surface Hall conductance [7].
Such a topological θ term with a universal value of θ = π in
TIs leads to a magnetoelectric effect with coefficient quantized
in units of e2/2h, known as the topological magnetoelectric
effect (TME), i.e., an electric field can induce a magnetic
polarization, whereas a magnetic field can induce an electric
polarization. To obtain the quantized TME in TIs, as is first
suggested in Ref. [7], one must fulfill the following stringent

requirements. First, introduce a T -breaking surface gap by
ferromagnetic (FM) ordering, where the magnetization of FM
points inward or outward from the surface. Second, finely
tune the Fermi level into the magnetically induced surface gap
and keep the bulk truly insulating. Third, the film of the TI
material should be thick enough to eliminate the finite-size
effect, therefore the TME is exactly quantized. Several other
theoretical proposals [11–14] have been made to realize the
the TME; however, observing the TME in TIs experimentally
is still challenging.

In this Rapid Communication, we propose to realize the
TME effect in the newly discovered quantum anomalous Hall
(QAH) state [15,16]. Recently, a new zero-plateau QAH state
in a magnetic TI has been theoretically predicted [17] and
experimentally realized [18,19]. The magnetic TI studied in the
QAH experiment develops robust FM at low temperature. In
the magnetized states, the magnetic domains of the material are
aligned to the same direction, and the system is in a QAH state
with a single chiral edge state propagating along the sample
boundary, where the Hall conductance σxy is quantized to
be ±e2/h. The zero-plateau state, on the contrary, appears
around the coercivity when the magnetic domains reverse,
where σxy shows a well-defined zero plateau over a range
of magnetic field around coercivity while the longitudinal
conductance σxx → 0 [shown in Fig. 1(a)]. In such a state,
the Fermi level is in the magnetization induced surface gap,
fulfilling the first two conditions above, providing a good
platform to observe the TME effect, as we will discuss in detail
below. However, due to a finite thickness in magnetic TIs, the
TME is nonquantized. Therefore, we further propose to realize
the quantized TME effect in the zero-plateau QAH state of the
FM-TI-FM heterostructure as shown in Fig. 1(b), where an
in-plane ac magnetic field induces an electric current in the
same direction, or an in-plane electric field induces a magnetic
field. The finite-size effect is also studied numerically, where
the TME coefficient is shown to converge to a quantized
value when the thickness of the TI film increases. Finally, we
propose a device setup where the nontopological contribution
from the side surface is negligible.

The TME described by the topological θ term implies that a
quantized magnetic polarization is induced by an electric field,

1098-0121/2015/92(8)/081107(5) 081107-1 ©2015 American Physical Society
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FIG. 3. (Color online) Finite-size effect of TME. (a) The γ and κ(z = 0) as a function of d . The inset shows γ plotted vs the inverse of
thickness 1/d . (b) The current amplitude J0 scales linearly with d . Here, θ/π = γ .

that a quantized TME can be realized in the zero-plateau
state of the FM-TI-FM structure as shown in Fig. 1(b). The
FM insulators A and B have different coercivities Hc

1 and
Hc

2 , respectively. Assume that both FM A and B have an
out-of-plane magnetic easy axis, and the same sign of the
exchange coupling parameter to the TI surface states. When
A and B have antiparallel magnetization, the system is in a
zero-plateau QAH state with σ tot

xy = 0, which is contributed by
σ t

xy + σ b
xy as (1/2 − 1/2)(e2/h) or (−1/2 + 1/2)(e2/h). Such

a magnetization configuration can be easily achieved in the
hysteresis loop by an external field H with Hc

1 < |H | < Hc
2 ,

and then remove H . Experimentally, to achieve the TME in this
setup, a good proximity between FM and TI is necessary. The
TI material can be chosen as BiySb1−yTe3, where the Dirac
cone of the surface states is observed to be located in the bulk
band gap [21]. The candidate FM materials are Cr2Ge2Te6
(CGT), Crx(Bi,Sb)2−xTe3 (CBST) with 0.3 < x < 0.46, and
Vx(Bi,Sb)2−xTe3 (VBST). All of them are FM insulators with
an out-of-plane easy axis, and have a good lattice match
with the Bi2Te3 family materials. CGT is a soft FM insulator
with Tc ∼ 61 K and Hc < 100 Oe [22], and it also shows
good proximity with Bi2Te3 [23]. CBST with 0.3 < x < 0.46
is a FM insulator with Tc = 40–90 K and Hc ∼ 1.0 × 103

Oe [24]. VBST with 0.1 < x < 0.3 is a FM insulator with
Tc = 30–100 K and Hc ∼ 1.0 × 104 Oe [25].

TME. As we discussed previously, an electric field will
induce a topological contribution to bulk magnetization. From
the constituent equation H = B/µ − M, with H = 0 and B
continuous, we have, on the middle of the side surface (parallel
to ẑ), B = −µ(e2/2h)Ey ŷ. Here, µ is the material-dependent
magnetic permeability. Taking µ ≈ µ0, Ey = 105 V/m, we
get the magnitude of the magnetic field 2.43 × 10−6 T, which
is easily detectable by present superconducting quantum
interference devices (SQUIDs). The stray magnetic field
effect can be well separated from the quantized TME by ac
modulation of the electric field and phase-locking detection,
where the ac frequency is quasistatic around 10–100 Hz.
Moreover, a gradiometer sensor in SQUID could also screen
the homogeneous stray field.

The TME also indicates the induction of a parallel polar-
ization current when an ac magnetic field is applied. Consider
the process of applying an ac magnetic field B = Bx x̂ as

shown in Fig. 2(a). A circulating electric field E parallel to
side surface (parallel to B) is generated due to Faraday’s law
of induction, where Et = −Eb = (∂Bx/∂t)(d/2)ŷ. Such an
electric field will induce a Hall current density j2D = j2D

t + j2D
b ,

where j2D
t = σ t

xy ẑ × Et and j2D
b = σ b

xy ẑ × Eb. Therefore, the
total current J = j2Dℓ = J x̂, where

J = θ

π

e2

2h

∂Bx

∂t
ℓd. (3)

Here, d and ℓ are the thickness and width of the TI film
as shown in Fig. 2(a), and θ → π when d is large enough.
For an estimation, take Bx = B0e

−iωt , B0 = 10 G, ω/2π = 1
GHz, d = 20 nm, θ/π ≈ 0.91 (the finite-size effect taken
into account as in Fig. 3), and ℓ = 500 µm, we have J =
−iJ0e

−iωt with J0 = 1.11 nA, in the range accessible by
transport experiments. Moreover, as shown in Fig. 3(b), the
current amplitude J0 scales linearly with thickness d, for θ is
a linear function of 1/d with (1 − θ/π ) ∝ 1/d, i.e., a thicker
film gives rise to a larger TME.

Finite-size effect. Due to the finite-size confinement along
the z direction, the TME effect is not quantized when the
TI film is thin. However, as we shall show below, the TME
coefficient converges quickly into the quantized value as the
film thickness d increases. The generic Hamiltonian of a TI
thin film can be written as H2D(k) =

∫ d/2
−d/2 dzH3D(k,z). Here,

k = (kx,ky), and we impose periodic boundary conditions in
both the x and y directions. The magnetoelectric response
of such a thin film can be directly calculated with the Kubo
formula. With the 3D in-plane current density operator defined
as j3D(k,z) = (e/!)∂kH3D(k,z), we can write down a dc
current correlation function,

)xy(z,z′) = !2

2πe2

∫
d2k

∑

n̸=m

f (ϵnk)

×2 Im

[
⟨unk|j 3D

x (k,z)|umk⟩⟨umk|j 3D
y (k,z′)|unk⟩

(ϵnk − ϵmk)2

]

,

where |unk⟩ is the normalized Bloch wave function in the nth
electron subband satisfying H2D(k)|unk⟩ = ϵnk|unk⟩, and f (ϵ)
is the Fermi-Dirac distribution function. The Kubo formula for
magnetic field By induced by a uniform external electric field
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I. FIRST-PRINCIPLES CALCULATIONS OF
ELECTRONIC AND MAGNETIC PROPERTIES

The first-principles calculations are carried out in
the framework of the generalized gradient approxima-
tion (GGA) functional of the density functional theory
through employing the Vienna ab initio simulation pack-
age (VASP) with projector augmented wave pseudopo-
tentials1,2. The experimental lattice constants (a0 =
4.334 Å, and c0 = 40.91 Å) are taken, and inner positions
are obtained through full relaxation with a total energy
tolerance 10�5 eV. The SOC e↵ect is self-consistently
included. By considering the transition metal Mn in
MnBi2Te4, LDA+U functional with U = 3 eV for Mn
d orbitals for all the results in this work.

II. FITTING PARAMETERS OF LOW-ENERGY
EFFECTIVE MODELS.

For the FM1 state, C = 0.0539 eV, D1 =
�4.0339 eVÅ2, D2 = 4.4250 eVÅ2, A1 = 1.3658 eVÅ,
A2 = 1.9985 eVÅ, M�

0 = 0.0307 eV, B�

1 = 4.2857 eVÅ2,
B�

2 = 8.3750 eVÅ2. A3 = �0.5450 eVÅ, A4 =
1.1384 eVÅ, M↵

0 = �0.1078 eV, B↵

1 = 0.6232 eVÅ2,
B↵

2 = 0.6964 eVÅ2, M�

0 = �0.0880 eV, B�

1 =

2.7678 eVÅ2, and B�

2 = 1.9650 eVÅ2.
For the AFM1 state, the e↵ective model is

HAFM1(k) =

0

B@

M 0(k) A0
1kz 0 A0

2k�
A0

1kz �M 0(k) A0
2k� 0

0 A0
2k+ M 0(k) �A0

1kz
A0

2k+ 0 �A0
1kz �M 0(k)

1

CA

+✏00(k), (1)

where ✏00(k) = C 0 + D0
1k

2
z

+ D0
2(k

2
x

+ k2
y

) and M 0(k) =
M 0

0+B0
1k

2
z

+B0
2(k

2
x

+k2
y

). The fitting parameters are C 0 =

�0.0048 eV, D0
1 = 2.7232 eVÅ2, D0

2 = 17.0000 eVÅ2,
A0

1 = 2.7023 eVÅ, A0
2 = 3.1964 eVÅ, M 0

0 = �0.1165 eV,
B0

1 = 11.9048 eVÅ2, and B0
2 = 9.4048 eVÅ2. We notice

that M 0
0 < 0 and B0

1, B
0
2 > 0, which correctly character-

izes the band inversion around k = 0 and the topologi-
cally non-trivial nature of the system.

The e↵ective model for AFM1 is the same as that
for topological insulator in Bi2Se3. Therefore, the
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FIG. 1. The electronic structures and Hall conductance of 1,
3, 5 SL thin film of MnBi2Te4. 3 and 5 SL presents QAH
e↵ect, while 1 SL is topologically trivial.

2D band inversion remains when thin film MnBi2Te4
with AFM1 phase exceeds 4 septuple layers (SL). The
band inversion in 2D is determined by the condition�
M 0

0 +B0
1hk2zin

�
B0

2 < 0. Here n is the subband index,
and hk2

z

i
n

= (n⇡/d)2 with d the thickness of thin film.
Interestingly, for thickness with even number of SL larg-
er than four, although band inversion exists, the Chern
number is zero due to conserved I⇥. For thickness with
odd number of SL larger than 4, ⇥I is also broken and
the system has spin polarized band inversion, which lead
to QAH e↵ect. Explicitly, we have calculated the band
structure and Hall conductance of 1, 3, 5 SL MnBi2Te4
thin film. As shown in Fig. 1, 3 and 5 SL presents QAH
e↵ect, while 1 SL is topologically trivial.

III. MnSb2Te4 AND EuBi2Te4.

The band structure of MnSb2Te4 and EuBi2Te4.
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Observation of zero-field QAH in 5 SL layer (Yuanbo
Zhang Group)
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optimum Cr concentration in the penta-layer in this present
study, (x, y)¼ (0.57, 0.74), presenting a well-defined QAH
effect at 0.5 K, where the residual Rxx at zero magnetic field
is as small as 0.017 h/e2.

In Fig. 4, the magnetic field dependence of Ryx and Rxx for
the presently optimized penta-layer (x, y)¼ (0.57, 0.74) under
VG¼VCNP is compared with varying temperatures: 0.5 K, 1 K,
2 K, and 4.2 K. Quantized Hall resistance is observed up to
1 K, where the residual longitudinal resistance is 0.081 h/e2,
which is a little higher than that at 0.5 K (0.017 h/e2). At 2 K,
Ryx is still close to the quantized value, 60.97 h/e2. Then, at

4.2 K, it goes away from QAH state (Ryx"60.87 h/e2), yet
showing the large Hall angle, 66.1#. To observe QAH effect
beyond liquid 4He temperature, further research is required, for
example, fine tuning of Cr concentration (x) and Bi/Sb ratio (y)
to suppress disorder and/or doping another magnetic element
such as V which can raise the Curie temperature as compared
with the similar concentration of Cr.12

As a final remark, we discuss the origin for the increase
in observable temperature of QAH effect in the magnetic
modulation doped structures. Since the Hall conductivity in
QAH regime is observed with a definite quantized value of

FIG. 3. Gate voltage dependence (VG)
of (a) Hall resistance (Ryx) and (b) lon-
gitudinal resistance (Rxx) in the penta-
layer devices at 0.5 K without mag-
netic field (B¼ 0 T). The results for
three devices with the different compo-
sitions in the penta-layer structure are
shown; (x, y)¼ (0.46, 0.78) (red line),
(0.57, 0.74) (blue line), and (0.95,
0.68) (gray line). Magnetic field (B)
dependence of (c) Ryx and (d) Rxx in
the respective compositions at 0.5 K,
tuned at the charge neutral point by
gating (VG¼VCNP).

FIG. 4. Magnetic field (B) dependence
of Hall resistance (Ryx) and longitudi-
nal resistance (Rxx) in the penta-layer
device (x¼ 0.57, y¼ 0.74) at 0.5 K (a),
1 K (b), 2 K (c) and 4.2 K (d). Gate
voltage (VG) was tuned at the charge
neutral point (VCNP).

182401-4 Mogi et al. Appl. Phys. Lett. 107, 182401 (2015)

(200 !C). The total thickness of films was fixed to 8 nm with
the deposition rate ("0.2 nm/min) determined from X-ray
diffraction measurement in uniformly doped samples. In syn-
thesis, Bi, Sb, and Te were co-evaporated and Cr was selec-
tively supplied for Cr modulation-doping. It was confirmed
in our previous study18 that the Cr could be doped in selec-
tive layers without inter-diffusion. To tune the chemical
potential at the charge neutral point, we varied the Bi/Sb
composition ratio (y) controlled by beam equivalent pressure
of Bi and Sb and fabricated top-gated field effect transistor
devices of Hall-bar geometry with 33-nm AlOx gate dielec-
tric layer. Low-temperature transport measurements were
carried out in a Quantum Design Physical Property
Measurement System (PPMS) using 3He system above 0.5 K
and in a dilution refrigerator below 0.5 K.

To explore the optimal structure of the modulated TI films
for stabilization of QAH effect, we fabricated three devices as
shown in Figs. 1(a)–1(c). The Bi/Sb ratio (y) was fixed at 0.78.
Figure 1(a) shows a uniformly doped Crx(Bi1#ySby)2#xTe3

(CBST) (x¼ 0.10) film (“single-layer”) which shows QAH
effect at 50 mK. Figures 1(b) and 1(c) show the schematic
structures with magnetic modulation doping; in the “tri-layer”
structure (Fig. 1(b)), the top and bottom 1-nm surface layers
are intensively Cr-doped (x¼ 0.46), while in the “penta-layer”
structure (Fig. 1(c)) Cr (x¼ 0.46) was doped in the similar
way apart, but by 1 nm away from the topmost and bottom-
most surfaces. The thickness of respective layers was nomi-
nally determined from the deposition rate. The Curie
temperature of single-, tri-, and penta-layer are about 9 K,
25 K, and 25 K, respectively, estimated from the temperature
dependence of Ryx under zero magnetic fields (see Fig. 2(d)
and its inset). Note that the nominal integrated Cr amounts in

three films were tuned to almost the same values and that
Cr-doping affects the chemical potential in CBST.

We show in Figs. 1(d) and 1(e) the gate voltage (VG)
dependence of Hall resistance (Ryx) and longitudinal resist-
ance (Rxx) at 0.5 K without external magnetic field (B¼ 0 T)
after magnetic-field cooling (B¼ 2 T). The charge neutral
points VCNP, where Hall angle (tan#1(Ryx/Rxx)) gets a maxi-
mum value, are 1.5 V for single-layer, 0.9 V for tri-layer, and
5.5 V for penta-layer. In the single-layer (gray line), Ryx is
about 0.85 h/e2 and Rxx has a dip at VG¼VCNP, indicating
the incipient feature of the metallic chiral edge state in QAH
regime. The values of Ryx and Rxx at 0.5 K are comparable to
the previous single-layer studies.6,7 The tri-layer (blue line)
has the similar gate voltage dependence and approaches
more closely to the QAH state than the single-layer case. In
the penta-layer (red line), Ryx shows the quantized Hall pla-
teau (h/e2) at around VG¼VCNP, indicating the occurrence of
QAH effect even at 0.5 K. Figures 1(f) and 1(g) show the VG

dependence at the lowest temperature of the present study,
50 mK. At VG¼VCNP, all three devices show the well-
defined QAH state, i.e., Ryx¼ h/e2 and Rxx" 0 X.
Nevertheless, a remarkable difference is seen in the width of
the QAH plateau against VG variation; the wide plateau in
VG variation probably reflects (1) the large effective mass-
gap in modulation-doped structure and (2) the difficulty of
EF tuning via gating. These two possibilities originate from
the rich-Cr-doped layer providing larger mass-gap and para-
sitic conduction in 1-nm layer, but the adverse implication is
effectively minimized by the modulated structure.

To clarify the characteristics of QAH effect in each
structure, we investigate the magnetic field B and temperature
T dependence under VG¼VCNP. Figures 2(a)–2(c) show the

FIG. 1. Schematics of the tested uni-
form and modulation magnetic doping
structures; (a) Crx(Bi1#ySby)2#xTe3

(x¼ 0.10, y¼ 0.78) single-layer. (b)
tri-layer (x¼ 0.46, y¼ 0.78), and (c)
penta-layer (x¼ 0.46, y¼ 0.78). Gate
voltage (VG) dependence of ((d) and
(f)) Hall resistance (Ryx) and ((e) and
(g)) longitudinal resistance (Rxx) of the
single-layer (gray line), the tri-layer
(blue line), and the penta-layer (red
line) at 0.5 K and at 50 mK, respec-
tively, with no external magnetic field
(B¼ 0 T).

182401-2 Mogi et al. Appl. Phys. Lett. 107, 182401 (2015)

Tokura group 2015
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Observation of QAH in 5 SL and possible AI in 4 SL 
(Yuanbo Zhang Group)
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Coexitence of QAH and QHE in odd layer
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Higher plateau QAH: multi-channel chiral edge states

Basic	physics (	realization	of	!"# = % &
'

( )	:

System:	thin	film	of	3D	TI	with	magnetic	dopping.

1)	Dopping induced	exchange	field		Δ splits	the	3D	bulk	
bands	with	spin	↑ and	↓ ,	and	only	one	pair	of	bulk	bands	
(, ↑, . ↓)	are	inverted,	while	the	other	are	not	(, ↓, . ↑).

2)	Make	3D	TI	into	a	thin	film	(compactify the	/ direction),	
so	that	

3D	bulk	bands	(, ↑, . ↓)	01	34567&8& 2D	sub-bands.

If the lowest % 2D sub-bands are inverted, we get a QAH
with Chern number% .

QAH	with	% = 2

18Wang	et	al,	Phys.	Rev.	Lett.	111,	136801	(2019)



Theoretical	phase	diagram	of	QAH (	thickness	: ,	exchange	field	Δ)

With	z direction	SOC

1 0A ≠
19

Higher plateau QAH: multi-channel chiral edge states

Promising to realize in FM MnBi2Te4

 

 
Figure 1. Gate-dependent transport properties of the 10-SL MnBi2Te4 device s6. (a) 

Crystal structure of MnBi2Te4. The red and blue arrows denote magnetic moment 

directions of Mn ions. (b) Optical image of the 10-SL MnBi2Te4 device s6. Scale bar 

represents 10 μm. (c) Temperature dependence of Rxx at Vbg=0 V. A resistance peak 

which corresponds to the antiferromagnetic transition is clearly observed at 22 K. (d, 

e) Ryx and Rxx as a function of magnetic field at different back gate voltages Vbg at 2 K. 

Under applied magnetic field, the Hall resistance plateau with a value of h/2e2 and 

vanishing Rxx are detected at -10 V≤ Vbg ≤ -58 V, which are characteristics of quantized 

Hall effect with Chern number C= 2. The black and red traces represent magnetic 

field sweeping to the positive and negative directions, respectively. (f) Rxx and Ryx as a 

function of Vbg at 2 K and -15 T. (g) The schematic FM order and electronic structure 

of the C=2 Chern insulator state with two chiral edge states across the band gap. The 

grey and blue colors are used to distinguish the adjacent MnBi2Te4 SLs.  
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Axion state in magnetic TI heterostructure

Y	Tokura et	al,	Nature	Mat	16,	516	(2017)
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Figure 1 | ZHP state in a MTI heterostructure towards an axion insulator. a,b, Schematic drawings of a quantum anomalous Hall (QAH) insulator (a) and
an axion insulator (b) in magnetic TI thin films. In an axion insulator, a magnetic field induces electric polarization and an electric field induces
magnetization as the TME e�ect. c–e, Schematic layouts of MBE-grown Cr-modulation-doped TI ((Bi,Sb)2Te3) thin films used for the experiments.
The Cr density (%) and Bi:Sb ratio of respective films are 5%, 22:78 (c) and 12%, 26:74 (d,e). f–h, Magnetic field (B) dependence of Hall conductivity (�xy)
and longitudinal conductivity (�xx) at the lowest temperature (40–50 mK) of a dilution refrigerator in the respective thin films shown in c–e. The applied
gate voltage is fixed at charge neutrality of the respective thin films (VG =0 V for c, 8 V for d, �2 V for e). The measured range of B is between 2 T and �2 T
for magnetization training. B taking a minimal value of �xx in the ZHP state is defined as B=B0.

In terms of magnetotransport measurements, we can verify the
realization of the QAH state and an axion insulator depending
on the magnetization direction of two magnetic layers in the
MTI heterostructure. When the applied perpendicular magnetic
field (B) is large enough to align the magnetizations of the two
magnetic layers parallel, then the QAH state with �xy = e2/h
is expected to appear. With decreasing magnetic field close to
Bc, the magnetization of one of the Cr-doped layers is reversed
to form the anti-parallel magnetization alignment, as shown in
Fig. 1b, which can host the axion insulator with �xy = 0. With
further decrease in magnetic field, the magnetization of the other
Cr-doped layer is also reversed and the magnetizations become
parallel again, returning to the QAH state. Thus, by monitoring
the magnetic field dependence of �xy , the emergence of the axion
insulator can be observed. For the transport measurement, we
prepared Hall-bar and Corbino-disk devices with electrostatic
gates to tune the Fermi energy in the magnetization gap.
These devices were cooled using a dilution refrigerator, and the

longitudinal and Hall resistances were measured using a standard
lock-in technique (see Methods for the device fabrication and
measurement set-up).

Let us begin with the results of the homogeneously Cr-doped
8-nm-thick film (Fig. 1c). The QAH state is exhibited with �xy
quantized to ±e2/h and almost vanishing �xx at B = 0 T (Fig. 1f).
�xy transits between +e2/h and �e2/h, sharply accompanied by
a single peak in �xx . This result indicates that the magnetization
reversal of the MTI occurs at once at the single coercive field Bc.
Similarly, in the symmetricMTI heterostructure (Fig. 1d), quantized
�xy reverses sharply accompanied by a single peak in �xx at around
B = Bc (Fig. 1g), indicating that the magnetization reversal of the
two magnetic layers occurs simultaneously at a single Bc. We infer
that the twomagnetic layers happen to have the same Bc and/or that
an interlayer magnetic coupling between them remains more or less
because of the relatively thin separation layer (2 nm).

In contrast to the above results, in the asymmetric MTI
heterostructure (Fig. 1e), we observe clear zero Hall conductivity
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the Fermi level (EF) is located near the charge neutral point (CNP) 
within the surface state gap. Second, all the curves show a resistivity 
kink at ~20 K, similar to that at TN = 25 K in bulk MnBi2Te4, sug-
gesting that TN is reduced to 20 K for the six-SL device. Third, the 
resistivity always becomes insulating at low T, in contrast to the 
metallic behaviour of the bulk sample. Finally, the resistivity drop 
is much more pronounced in the high Vg regime with large electron 
density, while the TN ~ 20 K is nearly independent of Vg. All these 
observations suggest that the six-SL sample enters a regime that is 
distinctively different from the bulk.

To probe the ground-state properties of six-SL MnBi2Te4, we 
measure the magnetic-field dependence of ρxx and ρyx at different 
gate voltages at T = 1.6 K. As shown in Fig. 3a, both quantities exhibit 
highly complex and yet systematic variations. A more detailed data 
set is documented in Supplementary Fig. 1, and here we only focus 
on the key features in three representative regimes. For Vg ≤ 14 V, 
EF lies in the valence band of the surface states and hole-type 2D  
carriers dominate the transport process, which can be seen from the 
overall positive slope of the Hall traces. For Vg ≥ 38 V, in contrast,  
EF lies in the surface conduction band and the electron-type 2D 
carriers give rise to the overall negative slope of the Hall traces.  

In these two limits, the MR curves show very different behaviours, 
presumably due to the different surface state electronic structure 
and scattering mechanisms. Nevertheless, in all MR curves two 
characteristic magnetic fields can be defined at around 2.5 T and 
5.0 T, which may mark the beginning and ending points of the mag-
netic-field-driven spin-flipping process in the six-SL sample. These 
are interesting topics that deserve thorough investigations, but will 
not be the main focus of the current work.

The most remarkable features of six-SL MnBi2Te4 exist in the gate 
range 22 V ≤ Vg ≤ 30 V (enclosed by the blue square in Fig. 3a), when 
EF lies within the magnetic gap of the surface states so the 2D con-
duction channels disappear. In this regime, the longitudinal resistiv-
ity at weak magnetic field is very large with ρxx up to 5.5h/e2, where 
h is Planck’s constant and e is electron charge, which is comparable 
to the value measured at 1 K in the QAH heterostructures14, and the 
relatively low ρxx value at zero magnetic field may be attributed to 
the existence of AFM domains. More interestingly, the Hall effect 
remains at zero for an extended field range −3.5 T < μ0H < 3.5 T, 
forming a wide ρyx = 0 plateau. These are the hallmark experimental 
signatures of an axion insulator with Chern number C = 0, which 
has been predicted to be the intrinsic ground state of MnBi2Te4 in 
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Fig. 3 | Gate-dependent transport properties and the magnetic-field-driven axion insulator to Chern insulator transition. a, Magnetic-field dependence 
of ρxx and ρyx at different gate voltages at T!=!1.6!K. When EF lies within the surface band gap for 22!V!≤!Vg!≤!30!V (blue square envelope), both the large 
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FIG. 1. (a) A single SL of MnBi2Te4, where seven atomic
layers form the ABC-type stacking. (b) Top view illustration
of A, B, and C stacking configurations of the triangular atomic
lattices. (c) The relatively twisted single SL BZ and the Moiré
BZ of tBMBT.

sion make it highly promising to realize the intrinsic QAH
e↵ect in few-SL MnBi2Te4 thin films [60, 61, 64, 68–70].

The weak Van der Waals coupling between SLs allows
the implementation of tBMBT by stacking two mono-SLs
with a twist angle. The first-principles calculations show
that few-SL MnBi2Te4 have competing FM and AFM
ground states [60, 61, 64]. Therefore, we investigate both
the FM and AFM phases of tBMBT for completeness,
where the two SLs have the same and opposite z direction
FM orders, respectively.

Model. We now construct an e↵ective continuum
model [32] for tBMBT formed by two SLs stacked on top
of each other with a twist angle ✓, which is generic for
C3z symmetric layered magnetic materials with low en-
ergy Dirac electrons. The Hamiltonian for such a model
can be written in real space as

H =

 
h1, ✓2

(�ir) + U
d

T (r)

T †(r) h2,� ✓
2
(�ir)� U

d

!
, (1)

where �ir is the 2D momentum in the monolayer Bril-
louin zone (BZ) of each SL, h

l,± ✓
2
is the 4 ⇥ 4 mono-

layer Hamiltonian of the l-th SL (l = 1, 2) rotated by
angle ±✓/2, U

d

is a staggered layer potential which can
be tuned by the top and back gates, and T (r) is the
4 ⇥ 4 interlayer Moiré hopping potential. The basis of
the monolayer Hamiltonian h

l,± ✓
2

is (|p+
z,Bi, "i, |p

�
z,Te, #

i, |p�
z,Te, "i, |p

+
z,Bi, #i)T of the l-th SL (l = 1, 2), where

superscripts “+”, “�” stand for parity. |p+
z,Bi, si is the

spin s bonding state of the p
z

orbitals of two Bi layers,
and |p�

z,Te, si is the spin s antibonding state of the two p
z

orbitals of the top and bottom Te layers. Since the low
energy physics in MnBi2Te4 is located near the � point,
we set the origin of the momentum �ir to be � of the
monolayer BZ. In the below, we study the FM and AFM
phases separately.

FM phase. Depending on the strength of FM exchange
field, the untwisted FM bilayer MnBi2Te4 may be either
a QAH insulator of Chern number ±1, or a trivial insula-
tor which enters the QAH phase under a small magnetic
field [68, 69]. To include both possibilities, we introduce

a dimensionless FM strength tuning parameter �
f

, where
|�

f

| = 1 corresponds to the FM order strength estimated
from the bulk MnBi2Te4 calculations [60]. In our param-
eters, the untwisted bilayer MnBi2Te4 is a QAH (trivial)
insulator when |�

f

| is larger (smaller) than �
f0 = 1.33.

Experimentally, �
f

is tunable by the magnetic field.
The monolayer Hamiltonian in Eq. (1) for a FM

tBMBT with FM strength �
f

can be written as

h
l,± ✓

2
(k) = R†

± ✓
2

[hN(k) + �
f

hFM(k)]R± ✓
2
, (2)

where k = (k
x

, k
y

) is the 2D electron momentum, R± ✓
2
=

diag(e±i✓/4, e⌥i✓/4, e⌥i✓/4, e±i✓/4) is the angle ±✓/2 rota-
tion matrix about the z axis. hN(k) and hFM(k) are the
nonmagnetic part and FM part of the k · p Hamiltonian
of single SL MnBi2Te4 at the � point, respectively, which
take the forms

hN(k) = ✏0(k) +

0

BB@

m(k) ↵k�
↵k+ �m(k)

�m(k) ↵k�
↵k+ m(k)

1

CCA , (3)

and

hFM(k) =

0

BB@

m1(k) ↵0k�
↵0k+ �m2(k)

m2(k) �↵0k�
�↵0k+ �m1(k)

1

CCA . (4)

Here ✏0(k) = �k2 is the particle-hole asymmetry term
proportional to the identity matrix, k± ⌘ k

x

± ik
y

,
m(k) = m0 + �0k2, and m

j

(k) = m
j

+ �
j

k2 (j = 1, 2).
The interlayer Moiré hopping potential T (r) is spa-

tially periodic. To the lowest order, it can be Fourier
expanded as

T (r) = T0 +
6X

j=1

T
j

eigj ·r , (5)

where g
j

(1  j  6) are the six smallest Moiré reciprocal
vectors with length |g

j

| = 8⇡ sin(✓/2)/
p
3a0 as shown in

Fig. 1(c). r = 0 is defined as an AA stacking center,
where the adjacent atomic layers of two SLs form AA
stacking. The matrices can be divided into

T
j

= TN
j

+ �
f

TFM
j

, (0  j  6) (6)

where TN
j

and TFM
j

are the nonmagnetic part and FM
part, respectively. The form of matrices T

j

and the pa-
rameters for the FM phase estimated from bulk calcula-
tions are given in the Supplementary Material (SM) [78].
We now investigate the Moiré band structure of the

FM tBMBT with respect to ✓, U
d

and �
f

. To distinguish
from the original monolayer BZ, we denote the high sym-
metry points of the hexagonal Moiré BZ as �

m

, K
m

and
M

m

. The bands of FM tBMBT are generically nondegen-
erate, many of which carry nonzero Chern numbers. The

Motivation: to get a time-reversal breaking flat Chern band in the single particle level.

SLs have van der Waals couplings, and the adjacent atomic
layers of neighboring SLs form AB stacking in the ground
state crystal structure.
Below a Néel temperature of ∼25 K, each SL of the bulk

MnBi2Te4 develops an intralayer FM order on the Mn
atoms with an out-of-plane easy axis, but adjacent SLs
couple anti-parallel to each other, yielding a topological
axion insulator with an out-of-plane layered AFM order.
The FM phase with an out-of-plane easy axis is a com-
peting ground state with a slightly higher energy, where the
system is a Weyl semimetal or a 3D QAH insulator [60,61].
The intrinsic magnetism and band inversion make it highly
promising to realize the intrinsic QAH effect in few-SL
MnBi2Te4 thin films [60,61,64,68–70].
The weak Van der Waals coupling between SLs allows

the implementation of tBMBT by stacking two mono-SLs
with a twist angle. The first-principles calculations show
that few-SL MnBi2Te4 have competing FM and AFM
ground states [60,61,64]. While the AFM phase is more
likely, it may be flipped into FM by a 2 ∼ 4 T magnetic
field [63,68,79] or top and bottom FM heterostructure
proximities. Therefore, we investigate both the FM and
AFM phases of tBMBT, where the two SLs have the same
and opposite z direction FM orders, respectively.
Model.—We now construct an effective continuum

model [32] for tBMBT formed by two SLs stacked on
top of each other with a twist angle θ, which is generic for
C3z symmetric layered magnetic materials with low energy
Dirac electrons. The Hamiltonian for such a model can be
written in real space as

H ¼
! h1;θ=2ð−i∇Þ þ Ud TðrÞ

T†ðrÞ h2;−θ=2ð−i∇Þ −Ud

"
; ð1Þ

where −i∇ is the 2D momentum in the monolayer Brillouin
zone (BZ) of each SL, hl;%θ=2 is the 4 × 4 monolayer
Hamiltonian of the l-th SL (l ¼ 1, 2) rotated by angle
%θ=2, Ud is a staggered layer potential which can be tuned
by the topandbackgates, andTðrÞ is the4 × 4 interlayermoiré
hopping potential. The basis of the monolayer Hamiltonian
hl;%θ=2 is ðjpþ

z;Bi;↑i; jp−
z;Te;↓i; jp−

z;Te;↑i; jpþ
z;Bi;↓iÞT of the

lth SL (l ¼ 1, 2), where superscripts þ, − stand for parity.
jpþ

z;Bi; si is the spin s bonding state of thepz orbitals of twoBi
layers, and jp−

z;Te; si is thespinsantibondingstateof the twopz

orbitals of the top and bottom Te layers. Since the low energy
physics in MnBi2Te4 is located near the Γ point, we set the
origin of the momentum−i∇ to be Γ of the monolayer BZ. In
the below, we study the FM and AFM phases separately.
FM phase.—Depending on the strength of FM exchange

field, the untwisted FM bilayer MnBi2Te4 may be either a
QAH insulator of Chern number %1, or a trivial insulator
which enters the QAH phase under a small magnetic
field [68,69]. To include both possibilities, we introduce
a dimensionless FM strength tuning parameter γf, where

we fix jγfj ¼ 1 to be the critical FM order strength above
(below) which the untwisted FM bilayer MnBi2Te4 is a
QAH (trivial) insulator [79]. Experimentally, γf is tunable
by the magnetic field.
The monolayer Hamiltonian in Eq. (1) for a FM tBMBT

with FM strength γf can be written as

hl;%θ=2ðkÞ ¼ R†
%θ=2½hNðkÞ þ γfhFMðkÞ'R%θ=2; ð2Þ

where k ¼ ðkx; kyÞ is the 2D electron momentum, R%θ=2 ¼
diagðe%iθ=4; e∓iθ=4; e∓iθ=4; e%iθ=4Þ is the angle %θ=2 rota-
tion matrix about the z axis. hNðkÞ and hFMðkÞ are the
nonmagnetic part and FM part of the k · p Hamiltonian of
single SLMnBi2Te4 at the Γ point, respectively, which take
the forms

hNðkÞ¼ ϵ0ðkÞþ

0

BBB@

mðkÞ αk−
αkþ −mðkÞ

−mðkÞ αk−
αkþ mðkÞ

1

CCCA; ð3Þ

and

hFMðkÞ ¼

0

BBB@

m1ðkÞ α0k−
α0kþ −m2ðkÞ

m2ðkÞ −α0k−
−α0kþ −m1ðkÞ

1

CCCA: ð4Þ

Here ϵ0ðkÞ ¼ γk2 is the particle-hole asymmetry term
proportional to the identity matrix, k% ≡ kx % iky,
mðkÞ ¼ m0 þ β0k2, and mjðkÞ ¼ mj þ βjk2 (j ¼ 1, 2).
The interlayer moiré hopping potential TðrÞ is spatially

periodic. To the lowest order, it can be Fourier expanded as

TðrÞ ¼ T0 þ
X6

j¼1

Tjeigj·r; ð5Þ

where gj (1 ≤ j ≤ 6) are the six smallest moiré reciprocal
vectors with length jgjj ¼ 8π sinðθ=2Þ=

ffiffiffi
3

p
a0 as shown in

Fig. 1(c). r ¼ 0 is defined as an AA stacking center, where
the adjacent atomic layers of two SLs form AA stacking.
The matrices can be divided into

Tj ¼ TN
j þ γfTFM

j ; ð0 ≤ j ≤ 6Þ; ð6Þ

where TN
j and TFM

j are the nonmagnetic part and FM part,
respectively. The form of matrices Tj and the parameters
for the FM phase estimated from bulk calculations are
given in the Supplemental Material [79].
We now investigate the moiré band structure of the FM

tBMBT with respect to θ, Ud, and γf. To distinguish from
the original monolayer BZ, we denote the high symmetry
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Flat Chern band from twisted bilayer MnBi2Te4: FM

FM:	need													symmetry	breaking

Staggered	layer	potential

Platform	for	fractionalized	QAH

3

FM tBMBT has C3z and C2xT symmetries at U
d

= 0
(T for TR). A nonzero U

d

is odd under C2xT and thus
breaks C2xT . Since the Hall conductance �

xy

is invariant
under C2xT , the band Chern numbers of FM tBMBT are
invariant under U

d

! �U
d

.
Fig. 2(a)-(e) show typical examples of the FM tBMBT

Moiré band structures, where the Chern number of the
j-th conduction (valence) band is denoted by C

Cj

(C
V j

),
and the parameters are given in the caption. The charge
neutrality point (CNP) is set as zero. In general, the
Chern numbers of the lowest several bands are tunable
up to ±3. However, most bands except for the low-
est conduction and valence bands have no indirect gaps
among each other. Therefore, the system is metallic with
nonzero Fermi surface Berry phases at high fillings.

Here we mainly focus on the lowest conduction and va-
lence bands of the FM phase. In the parameter space of ✓,
U
d

and �
f

, they undergo multiple Chern number topolog-
ical phase transitions via gap closings at high symmetry
points. Fig. 2(f) shows the Chern number phase diagram
of the lowest conduction and valence bands (C

C1, CV 1)
with respect to ✓ and �

f

at fixed U
d

= 40 meV. The
gap between the the lowest conduction and valence bands
closes at �

m

point around �
f

= 1.24 for a wide range of
✓, which leads to an exchange of Chern number 1 be-
tween these two bands. Accordingly, the FM tBMBT
at the CNP is a QAH insulator with Chern number �1
when �

f

> 1.24, and the first valence band carries Chern
number C

V 1 = �1. Compared to the untwisted FM bi-
layer MnBi2Te4, the FM tBMBT enters the QAH phase
at a smaller FM strength �

f

. This suggests that twist-
ing helps achieve the QAH e↵ect in bilayer MnBi2Te4.
In addition, the first conduction band undergoes a gap
closing with the second conduction band at K

M

and K 0
M

points at angle ✓ ⇡ 1.2� as shown in Fig. 2(f), where its
Chern number changes from 0 to 2.

Fig. 2(g) shows the phase diagram with respect to U
d

and �
f

at fixed angle ✓ = 1�. As one can see, adding a
staggered layer potential U

d

also helps achieve the QAH
e↵ect of Chern number �1 at the CNP, and accordingly
C

V 1 = �1. Besides, the Chern number of the first con-
duction band changes by 3 at U

d

⇡ 10 meV, which is
induced by the gap closing between the first and second
conduction bands at three M

m

points.
In particular, the first valence band of the FM tBMBT

with Chern number either �1 or 0 can be made extremely
flat, and the band is energetically separated from other
bands near twist angle ✓ = 1�. It is therefore promising
to realize TR breaking interacting topological states such
as the FCI and the p+ ip chiral topological superconduc-
tor (TSC). Generally speaking, adding a staggered layer
potential U

d

flattens the first valence band but not the
first conduction band, due to the particle-hole asymmet-
ric term ✏0(k) in Eq. (3). Fig. 2(a) and (b) show the band
structures at ✓ = 1� and �

f

= 1.35 with U
d

= 10 meV
and 40 meV, respectively, where the first valence band

(2,-1) (0,-1)

(-1,0)(1,0)

1
θ
2 3

1.3

1.2

1.1

1.0

γf

γf
1.24 1.281.26 1.3

(2,-1)

(-1,-1)(-2,0)

40

20

0

(1,0)

U
d(
m
eV
)

(a) (b) (c)

(d) (e)
(f)

(g)

m KmMm m Km'

-50

0

50

E(
m
eV
)

CV1=0

CC1=-1

m KmMm m Km'

-50

0

50

E(
m
eV
)

CV1=-1

CC1=0

m KmMm m Km'

-20

0

20

40

E(
m
eV
)

CV1=0

CC1=1

CC2=-3

CV2=1

m KmMm m Km'
-40

-20

0

20

40

E(
m
eV
)

CV1=-1

CC1=-1

CC2=0

CV2=1

m KmMm m Km'
-40

-20

0

20

40

E(
m
eV
)

CV1=-1

CC1=2

CV2=1

CC2=-2

FIG. 2. The band structure of the FM tBMBT for (a) ✓ =
1�, Ud = 10 meV, �f = 1.35, (b) ✓ = 1�, Ud = 40 meV,
�f = 1.35, (c) ✓ = 1�, Ud = 40 meV, �f = 1, (d) ✓ = 2�,
Ud = 40 meV, �f = 1.35 and (e) ✓ = 3�, Ud = 40 meV, �f =
1. (f) Chern numbers of the lowest conduction and valence
bands (CC1, CV 1) as a function of angle ✓ and exchange field
strength �f , where Ud = 40 meV is set. (g) (CC1, CV 1) for
✓ = 1� as a function of �f and staggered layer potential Ud.

has Chern number C
V 1 = �1, and the system has Chern

number �1 when the Fermi level is at CNP. In particu-
lar, when U

d

= 40 meV in Fig. 2(b), the bandwidth of
the first valence band is suppressed down to W ⇡ 1 meV,
while its gap with the other nearest bands is � ⇡ 4 meV.
Such an isolated flat Chern band is therefore an ideal
platform for realizing the FCI, where the electron filling
is readily tuned by a gate. For an estimation, taking the
dielectric constant of the MnBi2Te4 film ✏

r

⇡ 10, one ob-
tain a Coulomb interaction energy U ⇡ 6 meV for filling
in the first tBMBT band, which easily exceeds the band-
width and thus make the FCI possible. Besides, the FM
strength �

f

can further tune the Chern number of the
first valence band and accordingly the Chern number at
CNP. Fig. 2(c) shows the bands at ✓ = 1�, �

f

= 1 and
U
d

= 40 meV, where both the first valence band and the
CNP gap have Chern number 0. In this case, the first
valence band realizes a topologically trivial flat band of
bandwidth smaller than 5 meV.

With either Chern number 0 or �1, the nondegenerate
flat valence band allows a single Fermi surface with large
density of states when partially filled, leading to a chance
of realizing an intrinsic p + ip chiral TSC if a nodeless
pairing is developed [79–82]. The superconductivity ex-
perimentally discovered in other Moiré systems suggest
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that superconductivity is more likely to occur in the pres-
ence of Moiré superlattices [83], the mechanism of which
is still open. One possibility is that the Moiré pattern
enhances the electron-phonon coupling, if the supercon-
ductivity is phonon induced [84–86]. Therefore, the p+ip
TSC might be more achievable in TR breaking Moiré su-
perlattices such as tBMBT here than other TR breaking
systems.

When ✓ is far from 1�, it is di�cult to obtain energeti-
cally separated flat bands. For smaller ✓, the bandwidths
are smaller, but there are hardly indirect gaps except
for the CNP gap. For larger ✓, not only indirect gaps
are rare, but also the bands become more dispersive, as
shown in the two examples of Fig. 2(d) and 2(e) at ✓ = 2�

and 3� with U
d

= 40 meV, respectively. Detailed exam-
ination reveals that the optimal angles for flat bands in
the FM tBMBT falls within 0.8� . ✓ . 1.2�.

AFM phase. The monolayer Hamiltonian of the l-th
layer (l = 1, 2) in Eq. (1) for the AFM tBMBT takes the
form

h
l,± ✓

2
(k) = R†

± ✓
2

⇥
hN(k)� (�1)l�

af

hAFM(k)
⇤
R± ✓

2
, (7)

where hN(k) is still given in Eq. (3) but with di↵erent
parameters from FM phase, and the AFM term is ap-
proximated as

hAFM(k) =

0

BB@

m1

�m2

m2

�m1

1

CCA , (8)

which has no k dependence. �
af

tunes the AFM order
strength (�

af

= 1 represents the strength estimated from
the first-principles calculations). The interlayer Moiré
potential only contains the nonmagnetic part of Eq. (6),
i.e., T

j

= TN

j

. The matrices T
j

and the parameters for
the AFM phase are listed in the SM [78]. In contrast to
the 3D AFM MnBi2Te4 which has two-fold degenerate
bands protected by the PT symmetry (P for inversion),
the AFM tBMBT has nondegenerate bands, since the
twist angle breaks the PT symmetry. It only has C3z

and C2x symmetries at U
d

= 0, and C2x is further broken
when U

d

is nonzero.
Since �

xy

is odd under C2x, all the bands of the AFM
tBMBT have Chern number zero at U

d

= 0. Nonzero
Chern numbers can only arise at nonzero U

d

, and are
odd under U

d

! �U
d

. Fig. 3(a) and 3(b) show the
band structure of AFM tBMBT at ✓ = 1�, �

af

= 1 for
U
d

= 10 meV and 40 meV, respectively. Similar to the
FM phase, increasing U

d

flattens the first valence band
but not the first conduction band. Besides, the Chern
number of the first valence band undergoes a transition
from 0 to 1 as U

d

increases, which is induced by the
gap closing at K 0

m

point (note that K
m

and K 0
m

are not
symmetric). Fig. 3(d) shows the Chern number phase
diagram of the first conduction and valence bands with
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FIG. 3. The band structure of the AFM tBMBT for (a) ✓ =
1�, �af = 1, Ud = 10 meV, and (b) ✓ = 1�, �af = 1, Ud =
40 meV. (c) Zoom-in plot of the valence band structure in
(b), showing the bandwidth of the first valence band. (d)
(CC1, CV 1) as a function of the twist angle ✓ and the staggered
layer potential Ud.

respect to ✓ and U
d

. Therefore, the first valence band of
the AFM tBMBT can also be driven into a flat Chern
band separated from the other bands. Fig. 3(c) shows a
zoom-in plot of Fig. 3(b), where the first valence band
has a small bandwidth around W ⇡ 3 meV, and has
a small gap with the second valence band. The CNP
gap is always large and has Chern number 0. The con-
clusions are qualitatively insensitive to �

af

. This allows
the realization of the QAH e↵ect with Chern number
±1 in the AFM tBMBT by fully emptying the first va-
lence band. More importantly, this indicates the possi-
bility of realizing FCI and other interacting topological
phases in the AFM tBMBT, for the same reason as that
in the FM tBMBT case. Again, we find the optimal an-
gle for realizing energetically isolated flat bands in AFM
tBMBT is around ✓ = 1�. It is worth mentioning that a
larger ✓ can lead to relatively flat first valence band with
C

V 1 = �2 but without indirect gap from the second va-
lence band [78].

Discussion. The tBMBT with a twist angle near 1�

host isolated Moiré Chern bands, whose bandwidth is
significantly smaller than the Coulomb repulsion energy
(2 . U/W . 6). The broad variety of tuning parameters
including twist angle, staggered layer potential, electron
filling, magnetic field, and hydrostatic pressure will make
tBMBT a promising platform for realizing the correlated
topological phases. Disorders inevitably exist in realistic
materials. We note that short range scatters will broaden
the bandwidth, and thus reduce U/W , but the correlated
topological phases should be robust against long-range
potential fluctuations (i.e. charge puddles).

tBMBT may provide the first experimental platform
for isolated Moiré flat Chern bands. Besides tBMBT,
there are rich choices of magnetic layered topological ma-
terials such as Mn2Bi2Te5 [87] and MnBi4Te7 [88], etc.
These materials provide fertile playground for investigat-
ing emergent correlated topological states in twisted mul-
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As one sweep the magnetic field, there is NECESSARY an intermediate phase
with chiral topological superconductivity!



Outlook
1. Zero-field	QAH	at	higher	temperature.

2. TME	and	axion electrodyanmics from	even	SL	MnBi2Te4.

3. Flat	Chern bands	in	twisted	bilayerMnBi2Te4,	promising	for	

fractionalized	QAH.

4. QAH/SC	heterostructure for	chiral	Majorana fermion.

30

Bulk	(AFM) Bulk	(FM) Odd	layer	film Even	layer	film

AFM	TI Minimal	Weyl
semimetal

QAH	effect axion insulator,	
zero	Hall	plateau

gapped	Dirac	SS	
(T	dependent)

Fermi	arc chiral	edge	states TME,	image	
monopole



Acknowledgements

31

Fudan
Yuanbo Zhang

Yijun Yu

Yujun Deng

Nanjing
Haijun Zhang

Princeton
Biao Lian

Funding:
National Science Foundation of China

National Key Research Program of China

Stanford
Xiao-Liang Qi

Shou-Cheng Zhang

Thank you for your attention!


