Fingerprints of Majorana modes beyond the zero-bias conductance peak

Satoshi Ikegaya

Max Planck Institute for Solid State Research

Collaborators

• Dirk Manske (MPI)

• Yasuhiro Asano (Hokkaido Univ.)

- Yukio Tanaka (Nogoya Univ.)
- Shun Tamura (Nogoya Univ.)

Contents

O. Motivation: Go beyond proving the existence of edge states

1. Anomalous nonlocal conductance as a fingerprint of chiral Majorana edge states PRL 123, 207002 (2019)

2. Anomalous proximity effect of planar topological Josephson junctions

arXiv: 2007.12888 [PRB(R), in publication]

Motivation

Topological superconductors

Topological superconductors

Great attention due to:

- emergence of Majorana bound states($\gamma = \gamma^{\dagger}$),
- potential applications to quantum computations, etc.

Various edge states

Tunneling spectroscopy

Tunneling spectroscopy

Powerful experiment! Actually...

Experimental observations so far

7/35

Motivation

For the **past decade**, the **existence** of topological edge states has been **demonstrated** in various systems.

The time has come to **go beyond** proving their **existence** and **embark on** investigating the **nature** of topological edge states **more thoroughly**.

Anomalous nonlocal conductance as a fingerprint of chiral Majorana edge states

S. Ikegaya, Y. Asano, and D. Manske

Phys. Rev. Lett. 123, 207002 (2019)

Objective (1)

Powerless to capture the "individuality" edge states.

Objective (1)

Proposing a "**smoking-gun**" experiment for identifying "**chiral**" Majorana edge states

Idea

Nonlocal transport in a ferromagnet/chiral *p*-wave superconductor hybrid

Model

Formulation: BTK formula

- I_{β} : current in lead β
- V_{α} : applied bias voltage to lead α

(lead β and superconductor are grounded.)

Formulation: BTK formula

Expectation

CMESs moving from the lead 1 to lead 2:

- assist the nonlocal transport from the lead 1 to lead 2.

 \Rightarrow G₂₁ is finite irrespective of *L*.

- never assist the nonlocal transport from the lead 2 to lead 1.

• G_{12} is almost zero.

Results

CMESs moving from the lead 1 to lead 2:

- assist the nonlocal transport from the lead 1 to lead 2.

 \Rightarrow G₂₁ is finite irrespective of *L*.

- never assist the nonlocal transport from the lead 2 to lead 1.

• G_{12} is almost zero.

Advantages of our proposal

(I) Unique phenomenon for chiral edge states

(II) We only need the **distinct contrast** in G_{21} and G_{12} .

Promising strategy for identifying CMESs

$G_{21} = \frac{e^2}{h} \left[-R_{21}^{\text{EC}} + R_{21}^{\text{CAR}} \right]^{(a)} \frac{1.0}{2.0} + \frac{1.0}{M_{\text{ex}}/\mu_{\text{f}}} M_{\text{ex}}/\mu_{\text{f}} M_{\text{ex}}/\mu_{\text{f}}$					
half-metal	antiparallel	$M_{ex} = 0$	parallel	half-metal	
$G_{21} = \frac{e^2}{h}$	$G_{21} > 0$	$G_{21} = 0$	$G_{21} < 0$	$G_{21} = -\frac{e^2}{h}$	
$R^{\text{EC}} = 0$ $R^{\text{CAR}} = 1$	$R^{\mathrm{EC}} < R^{\mathrm{CAR}}$	$R^{\mathrm{EC}} = R^{\mathrm{CAR}}$	$R^{\mathrm{EC}} > R^{\mathrm{CAR}}$	$R^{\text{EC}} = 1$ $R^{\text{CAR}} = 0$	

$G_{21} = \frac{e^2}{h} \left[-R_{21}^{\text{EC}} + R_{21}^{\text{CAR}} \right] \xrightarrow{(a) 1.0} -2.0 \xrightarrow{(a) 1.0} 0.0 \xrightarrow{(a) 1.0} 2.0} M_1 = M_{ex} \hat{z}, M_2 = M_{ex}\hat{z}$					
half-metal	antiparallel	$M_{ex} = 0$	parallel	half-metal	
$G_{21} = \frac{e^2}{h}$	$G_{21} > 0$	$G_{21} = 0$	<i>G</i> ₂₁ < 0	$G_{21} = -\frac{e^2}{h}$	
$R^{\text{EC}} = 0$ $R^{\text{CAR}} = 1$	$R^{\mathrm{EC}} < R^{\mathrm{CAR}}$	$R^{\mathrm{EC}} = R^{\mathrm{CAR}}$	$R^{\mathrm{EC}} > R^{\mathrm{CAR}}$	$R^{\text{EC}} = 1$ $R^{\text{CAR}} = 0$	

$G_{21} = \frac{e^2}{h} \left[-R_{21}^{\text{EC}} + R_{21}^{\text{CAR}} \right]^{(a)} \frac{1.0}{2.0} + \frac{1.0}{M_{\text{ex}}/\mu_{\text{f}}} M_{\text{ex}}/\mu_{\text{f}}} M_{\text{ex}}/\mu_{\text{f}}$					
half-metal	antiparallel	$M_{ex} = 0$	parallel	half-metal	
$G_{21} = \frac{e^2}{h}$	$G_{21} > 0$	$G_{21} = 0$	$G_{21} < 0$	$G_{21} = -\frac{e^2}{h}$	
$R^{\text{EC}} = 0$ $R^{\text{CAR}} = 1$	$R^{\mathrm{EC}} < R^{\mathrm{CAR}}$	$R^{\mathrm{EC}} = R^{\mathrm{CAR}}$	$R^{\mathrm{EC}} > R^{\mathrm{CAR}}$	$\frac{R^{\rm EC}}{R^{\rm CAR}} = 0$	

$G_{21} = \frac{e^2}{h} \left[-R_{21}^{\text{EC}} + R_{21}^{\text{CAR}} \right]^{-2.0 - 1.0 0.0 1.0 2.0} M_1 = M_{\text{ex}} \hat{z}, M_2 = M_{\text{ex}}\hat{z}$					
half-metal	antiparallel	$M_{ex} = 0$	parallel	half-metal	
$G_{21} = \frac{e^2}{h}$	$G_{21} > 0$	$G_{21} = 0$	<i>G</i> ₂₁ < 0	$G_{21} = -\frac{e^2}{h}$	
$R^{\text{EC}} = 0$ $R^{\text{CAR}} = 1$	$R^{\mathrm{EC}} < R^{\mathrm{CAR}}$	$R^{\mathrm{EC}} = R^{\mathrm{CAR}}$	$R^{\mathrm{EC}} > R^{\mathrm{CAR}}$	$R^{\text{EC}} = 1$ $R^{\text{CAR}} = 0$	

$G_{21} = \frac{e^2}{h} \left[-R_{21}^{\text{EC}} + R_{21}^{\text{CAR}} \right]^{-2.0 - 1.0 0.0 1.0 2.0} M_1 = M_{\text{ex}} ^2, M_2 = M_{\text{ex}}^2$					
half-metal	antiparallel	$M_{ex} = 0$	parallel	half-metal	
$G_{21} = \frac{e^2}{h}$	$G_{21} > 0$	$G_{21} = 0$	<i>G</i> ₂₁ < 0	$G_{21} = -\frac{e^2}{h}$	
$R^{\text{EC}} = 0$ $R^{\text{CAR}} = 1$	$R^{\mathrm{EC}} < R^{\mathrm{CAR}}$	$R^{\mathrm{EC}} = R^{\mathrm{CAR}}$	$R^{\mathrm{EC}} > R^{\mathrm{CAR}}$	$R^{\text{EC}} = 1$ $R^{\text{CAR}} = 0$	

When $d \parallel \pm M_{\alpha}$, EC process CAR process chiral *p*-wave SC chiral *p*-wave SC electrons have electron and hole same spin have opposite spin $R^{\text{EC}} > R^{\text{CAR}}$ **Parallel** $R^{\text{EC}} < R^{\text{CAR}}$ **Antiparallel**

M_{α} dependence: Direction

- Maximum magnitude for $M_1 \parallel d$ and $M_2 \parallel d$
- Zero only for $M_{\alpha} \perp d$

Distinct contrast between G_{12} and G_{21} remains for the broad range of the magnetization alignments.

Wave function

Wave function at zero energy having largest contribution to R^{CAR}

Long-ranged nonlocal transport is indeed mediated by the CMESs.

Conclusion (1)

Distinct contrast between G_{21} and G_{12} due to the **chiral motion** of the CMESs

Promising direction for obtaining the **smoking-gun evidence** for the CMESs

Phys. Rev. Lett. 123. 207002 (2019)

Anomalous proximity effect of planar topological Josephson junctions

S. Ikegaya, S. Tamura, D. Manske, and Y. Tanaka

arXiv: 2007.12888 [PRB(R), in publication]

Anomalous proximity effect

- gapped DOS
- reduction in resistance
- diamagnetism

Superconductivity-like

spin-triplet p-wave

- zero-energy peak in DOS
- zero-bias conductance peak
- paramagnetism

Counter-intuitive! Anomalous!

Y. Tanaka, et al., PRB(2004)

Majorana bound states

p-wave Superconductor

Majorana bound states (MBSs)

- particle = anti-particle ($\gamma = \gamma^{\dagger}$)
- topologically protected

Majorana bound states

Majorana bound states (MBSs)

- particle = anti-particle ($\gamma = \gamma^{\dagger}$)
- topologically protected

Majorana bound states

Majorana bound states (MBSs)

- particle = anti-particle ($\gamma = \gamma^{\dagger}$)
- topologically protected

Penetration of MBSs

- Zero-energy peak in DOS Y. Tanaka, et al., PRB(2004)
- Resonant states at zero-energy SI, et al., PRB(2015)

Odd-frequency Cooper pairs

p-wave superconductor

• Pairing symmetry: $F_{\sigma\sigma'}(r, r', \omega) = -F_{\sigma'\sigma}(r', r, -\omega)$ spin × parity × frequency = -1

Y. Tanaka, et al., PRL(2007), Y. Asano, et al., PRL(2011), S.-I. Suzuki, et al., PRL(2014)

Odd-frequency Cooper pairs

p-wave superconductor

• Pairing symmetry: $F_{\sigma\sigma'}(r, r', \omega) = -F_{\sigma'\sigma}(r', r, -\omega)$ spin × parity × frequency = -1 triplet p-wave (even) (odd) even- ω

Y. Tanaka, et al., PRL(2007), Y. Asano, et al., PRL(2011), S.-I. Suzuki, et al., PRL(2014)

Odd-frequency Cooper pairs

• Pairing symmetry: $F_{\sigma\sigma'}(r, r', \omega) = -F_{\sigma'\sigma}(r', r, -\omega)$

Y. Tanaka, et al., PRL(2007), Y. Asano, et al., PRL(2011), S.-I. Suzuki, et al., PRB(2014)

Important problem

Important problem

No experimental evidences so far Crucial lack of suitable superconducting systems

Planar topological Josephson junction

What we additionally need is a dirty normal-metal.

Objective (2)

(e.g.) Focused ion beam techniques

Objective (2)

We study the anomalous proximity effect of topological Josephson junctions.

Model and Formulation

Model and Formulation

Model and Formulation

• Bad transparency at the lead-wire/dirty normal-metal interface.

Differential conductance

Blonder-Tinkham-Klapwijk formula

$$G_{NS}(eV) = \frac{e^2}{h} \sum_{\alpha\beta} \left(1 + \left| r_{\alpha\beta}^{he}(E) \right|^2 - \left| r_{\alpha\beta}^{ee}(E) \right|^2 \right)_{E} = eV$$

Topological phase diagram

Differential conductance

ZBC quantization only in the topological phase

(irrespective of disordered potentials)

Drastic change in the conductance spectrum

Penetration of MBSs

Penetration of odd- ω Cooper pairs

Odd- ω pair amplitude

Conclusion (2)

Anomalous proximity effect in a planar topological Josephson junction

Promising for achieving the first experimental observation

arXiv: 2007.12888 [PRB(R), in publication]

Summary

Summary

In-plane magnetic field Superconductor Dirty normal-metal Image: Superconductor Image: Superconductor Image: Superconductor

Proving profound natures of topological edge states!

- Anomalous nonlocal conductance as a fingerprint of chiral Majorana edge states Phys. Rev. Lett. 123, 207002 (2019)
 Applicable to UTe2
- Anomalous proximity effect of planar topological Josephson junctions
 Promising for the first experimental observation
 arXiv: 2007.12
 IPRB(R), in planar

arXiv: 2007.12888 [PRB(R), in publication]

