

Topological superconductivity in designer van der Waals heterostructures

Peter Liljeroth (peter.liljeroth@aalto.fi, @AaltoAtoms)

Aalto University, Helsinki, Finland

Physics of designer materials

Designer materials: control geometry, unit cell, interactions...

- You can think in terms of simple tightbinding \Rightarrow engineered electronic structure
- modulate hoppings
- lattice symmetry (honeycomb, kagome, Lieb etc.)
- spin-orbit interaction and magnetism (topological insulators etc.)
- Different experimental realizations

 ADVANCES IN PHYSICS: X
 Taylor & Francis

 2019, VOL. 4, NO. 1, 1651672
 Taylor & Francis Group

 https://doi.org/10.1080/23746149.2019.1651672
 OPEN ACCESS

 REVIEW
 OPEN ACCESS

 Engineered electronic states in atomically precise artificial lattices and graphene nanoribbons
 Alexander A. Khajetoorians ™, Daniel Wegner, Alexander F. Otte & Ingmar Swart ™

 Linghao Yan (b) and Peter Liljeroth (b)
 Nature Reviews Physics (2019) | Download Citation ±

Mixing magnetism and superconductivity

A?

- Single spins give rise to Yu-Shiba-Rusinov bound states
 - see all the work from the Pascual and Franke groups (e.g. B. Heinrich, Prog. Surf. Sci. 93, 1 (2018)
- Neighboring YSR states can hybridize and form coupled states
- Larger assemblies YSR bands and possibly topological superconductivity

Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors Kim et al., Sci. Adv. 2018;4:eaar5251

Howon Kim,¹* Alexandra Palacio-Morales,¹ Thore Posske,¹ Levente Rózsa,¹ Krisztián Palotás,^{2,3} László Szunyogh,⁴ Michael Thorwart,¹ Roland Wiesendanger¹*

Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor

Stevan Nadj-Perge,^{1*} Ilya K. Drozdov,^{1*} Jian Li,^{1*} Hua Chen,^{2*} Sangjun Jeon,¹ Jungpil Seo,¹ Allan H. MacDonald,² B. Andrei Bernevig,¹ Ali Yazdani¹†

Topological superconductivity in 2D

PRL 114, 236803 (2015)

week ending 12 JUNE 2015

- 1D Majorana edge modes
- Depends on substrate spin-orbit and magnetic texture of the lattice
- Potentially a rich variety of different Chern numbers

A. Palacio-Morales et al., Sci. Adv. 5, eaav6600 (2019)

Topological Superconductivity and High Chern Numbers in 2D Ferromagnetic Shiba Lattices

PHYSICAL REVIEW LETTERS

Joel Röntynen and Teemu Ojanen^{*} O. V. Lounasmaa Laboratory (LTL), Aalto University, P. O. Box 15100, FI-00076 AALTO, Finland (Received 18 December 2014; published 12 June 2015)

G. Ménard et al. Nat. Commun. 8, 2040 (2017)

Topological superconductivity

Standard recipe

- 1. Start with a simple parabolic band
- 2. Add Rashba spin-orbit coupling α
- **3.** Add Zeeman term *M* (perpendicular to spin-orbit)
- 4. Add superconductivity Δ
- Condition for the topological phase

 $|\epsilon(\vec{k_0}) - \mu| \le M$

The topological gap is

$$\Delta_t = \frac{\alpha k_F}{[(\alpha k_F)^2 + M^2]^{1/2}} \Delta$$

Van der Waals designer materials?

- Combine completely different materials in lateral or vertical heterostructures
- Weak vdW bonding between the layers
 - ⇒ Layers retain their intrinsic properties
- Look for new phenomena that arise from the interaction between the layers
- Sample preparation: ensure clean edges and interfaces by using in-situ growth via e.g. molecular-beam epitaxy (MBE)

Combine 2D magnetic layers with interesting substrates

- Discovery of ferromagnetism in van der Waals crystals: Crl_3 and $Cr_2Ge_2Te_6$
- Need to be able to grow in situ e.g. by molecular beam epitaxy with out of plane magnetization
- Several TMDs (or similar) exhibit ferromagnetism down to a monolayer
 - VSe₂: Bonilla et al. Nat. Nanotech.
 13, 289 (2018)
 - VSe₂ / NbSe₂: Kezilebieke et al. Commun. Phys. 3, 116 (2020).
 - MnSe₂: O'Hara et al. Nano Lett. 18, 3125 (2018)
 - Exact mechanism in TMDs unclear: very weak temperature dependence, small hysteresis and large saturation magnetization

Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit

Bevin Huang¹*, Genevieve Clark²*, Efrén Navarro-Moratalla³*, Dahlia R. Klein³, Ran Cheng⁴, Kyle L. Seyler¹, Ding Zhong¹, Emma Schmidgall¹, Michael A. McGuire⁵, David H. Cobden¹, Wang Yao⁶, Di Xiao⁴, Pablo Jarillo-Herrero³ & Xiaodong Xu^{1,2}

270 | NATURE | VOL 546 | 8 JUNE 2017

Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals

Cheng Gong¹*, Lin Li²*, Zhenglu Li^{3,4}*, Huiwen Ji⁵, Alex Stern², Yang Xia¹, Ting Cao^{3,4}, Wei Bao¹, Chenzhe Wang¹, Yuan Wang^{1,4}, Z. Q. Qiu³, R. J. Cava⁵, Steven G. Louie^{3,4}, Jing Xia² & Xiang Zhang^{1,4}

8 JUNE 2017 | VOL 546 | NATURE | 265

REVIEW

https://doi.org/10.1038/s41586-018-0631-z

Magnetism in two-dimensional van der Waals materials

Kenneth S. Burch¹, David Mandrus^{2,3} & Je–Geun Park^{4,5}*

Science **366**, 983–987 (2019)

2D MAGNETISM

Direct observation of van der Waals stacking-dependent interlayer magnetism

Weijong Chen¹, Zeyuan Sun¹, Zhongjie Wang¹, Lehua Gu¹, Xiaodong Xu², Shiwei Wu^{1,3}*, Chunlei Gao^{1,3}*

CrBr₃ growth on NbSe₂

- Compound source MBE on freshly cleaved (under vacuum) NbSe₂ in UHV
- CrBr₃ powder evaporated from a Knudsen cell
- The optimal substrate temperature for the growth of CrBr₃ monolayer films is ~ 270°C
 - Below this temperature, CrBr₃ forms disordered clusters

Electronic and magnetic characerization

- Samples characterized with low-temperature STM, magnetooptical Kerr effect measurements and DFT calculations
 All STM in UHV, T = 4 K or 300 mK
- CrBr₃ monolayer ferromagnetic with out-of-plane magnetization
 - DFT: 6.097 $\mu_{\rm B}$ per unit cell
- Experiment: Curie temperature ca. 16 K

S. Kezilebieke et al. "Electronic and magnetic characterization of epitaxial CrBr₃ monolayers" arXiv:2009.13465

Low-bias spectroscopy

- Combining the required ingredients for topological superconductivity
- On the island, there is small but significant in-gap contribution
- Formation of Shiba bands due to the magnetic layer

1 ML CrBr₃

STM experiments at T = 350 mK

S. Kezilebieke et al. "Topological superconductivity in a van der Waals heterostructure", arXiv:2002.02141

Island edges

A?

- Distinct zero bias signature at the island edges
- Spatial mapping: localized edge modes

STM image:

LDOS map at $E_{\rm F}$:

S. Kezilebieke et al. "Topological superconductivity in a van der Waals heterostructure", arXiv:2002.02141

Is it topological superconductivity?

- Appears on all island edges
- Removing superconductivity (quenching with an external magnetic field) also removes the edge state completely
- Not Kondo, not standard edge state

Modelling TSC on a triangular lattice

- NbSe₂ triangular lattice modifies the dispersion
- Can get a topological phase at the high symmetry point of the Brillouin zone
 - |*C*/ = 1, 2, or 3, for the Γ, K, M

K

Triangular lattice

+ Rashba

Μ

K'

Energy [t]

5

2.5

0

-2.5

Conditions for TSC

- M-point closest to Fermi according to DFT
- Where are the bands in real life? Somewhat below Fermi
- Need to hit within magnetization of the Fermi level
 - Fine tuning?
 - Overall shift makes it more plausible

 \Rightarrow We are in the C = 3 topological phase

Comparison with theory at the edge

- Experiment: grid spectroscopy over an edge of a CrBr₃ island
- The edge modes coexist with Shiba bands at higher energies
- Quantitative match between theory and experiment:
- the correct edge mode penetration depth of ~2.5nm (orders of magnitude smaller than simple estimates)
- 2. the specific form of the subgap local density of states (depends on system-specific dispersion of the topological edge modes)
- 3. coexistence of the topological edge modes and bulk states in a substantial energy window
- 4. non-uniform distribution of the edgemode spectral weight (stems from geometric irregularities of the island boundary)

(n.a.n)

theory experiment High CrBr₃ NbSe expt. theory $0 \,\mathrm{mV}$ 0.18 mV 0.15 Δ 0.36 m\ 0.3 4 0.55 mV 0.46 A

Conclusions

- **Electronic and magnetic** characterization of epitaxial CrBr₃ monolayers, arXiv:2009.13465
- Topological superconductivity in a designer ferromagnetsuperconductor van der Waals heterostructure, arXiv:2002.02141

LDOS maps at zero energy

Acknowledgements

Experiments at Aalto: Shawulienu Kezilebieke, Nurul Huda, Somesh Ganguli, Viliam Vaňo, Markus Aapro, Mohammad Amini, Xin Huang, Linghao Yan, Chen Xu, Benjamin Alldritt, Shuning Cai

Theory collaborators: Teemu Ojanen (Tampere), Szczepan Głodzik (Lublin)

DFT (Aalto): Orlando Silveira, Adam Foster

Magnetic characterization:

Sebastiaan

van Dijken

Rhodri Mansell

Theory:

Szczepan Głodzik

OF FINLAND erc

European Research Council

ACADEMY

Orlando Silveira

DFT:

Adam Foster

Centre for

Quantum

Engineering