

Coherent order and transport in spin-active systems: Interplay between magnetism and superconductivity

Bose-Einstein condensation of magnons in confined systems

Burkard Hillebrands

Fachbereich Physik and Landesforschungszentrum OPTIMAS Technische Universität Kaiserslautern, Germany

European Research Council Established by the European Commission

www.physik.uni-kl.de/hillebrands

Magnon as a quanta of spin-wave

Energy

Momentum

 $\vec{p} = \hbar \vec{q}$

 $\varepsilon = \hbar \omega = \frac{\eta}{\hbar} p^2$

- Mass $m=\hbar/(2\eta)$
- Spin
- s = 1
- Four- and three-magnon scattering

Magnon gas

Magnon Bose-Einstein condensation

Bose-Einstein distribution

$$\rho(\omega) = \frac{D(\omega)}{\exp\left(\frac{\hbar\omega - \mu}{k_{\rm B}T}\right) - 1}$$

μ: chemical potential

External injection of magnons beyond the thermal equilibrium level (about 3%) increases the chemical potential to the bottom of magnon spectrum and leads to Bose-Einstein condensation scenario even at room temperature

Computing principles

- Classical Computing
 - Scalar variable
 - Boolean logic
- Wave Packet Computing
 - Vector variable
 - Special task data processing
- Macroscopic Quantum State Computing
 - Vector state variable
- Quantum Computing
 - Vector state variable
 - Entanglement

Macroscopic quantum states

Main idea: find macroscopic magnonic quantum states for information transfer and processing

- analogous to superconductivity (Josephson currents) and to superfluidity in ³He and ⁴He
- free of dissipation (apart from magnon-phonon and magnon-electron coupling)

This talk:

Macroscopic magnonic quantum states in confined systems

Why do we name this a "Macroscopic Quantum State"?

Microscopic quantum phenomena

TECHNISCHE UNIVERSITÄT

Wave–particle duality \rightarrow Microscopic scale of the system is comparable with the de Broglie wavelength of particles (electrons, Bose atoms, etc.)

Macroscopic quantum phenomena

Wave–particle duality → Macroscopic scale of the system is comparable with the coherence length of the de Broglie wave

 Bose-Einstein condensate (BEC) of particles – spontaneous population by a large number of Bose particles of a single quantum state with macroscopically-large coherence length

 BECs of magnons (quanta of spin waves) – spontaneous formation of a coherent wave in a chaotic magnon system In **quasi-classical limit** (large number of particles and occupation numbers of magnons) described by the Gross-Pitaevskii equation for de Broglie or spin waves

Properties of both types of condensates are almost identical

"Macroscopic Quantum Phenomena"

₽

make use of analogy with numerous phenomena in Bose-Einstein condensates of atoms: supercurrent, Bogoliubov waves, Josephson effects

SPICE Workshop "Coherent order and transport in spin-active systems"

A possible application: magnon BEC qubits

Qubit: we need two states $|+\rangle$ and $|-\rangle$ with welldefined amplitudes and phases to form a qubit state $a|+\rangle + b|-\rangle$

Use magnon Bose-Einstein condensates for representation of the two qubit states:

Representation of qubit state on Bloch sphere:

Magnon BEC by microwave excitation

Parametric pumping: Magnon BEC by spacial injection:

- \Rightarrow Excess magnon generation via local microwave injection
- ⇒ thermalization into flow equilibrium, or relaxation into BEC state via four-magnon scattering events

S.O. Demokritov et al., Nature **443**, 430 (2006)

Key element: Excess magnons cannot relax within system relaxation time \rightarrow finite chemical potential μ

New: BEC by time-scale injection in confined systems:

- \Rightarrow Excess magnon generation via sudden temperature decrease
- \Rightarrow relaxation into BEC state

(no microwave generation involved)

Bose-Einstein condensation of magnons by rapid cooling

Michael Schneider

Oleksandr Serha

Andrii Chumak (now University of Vienna)

Magnon BEC via time-scale injection

Rapid cooling of a magnon-carrying specimen

High-energy magnon states are populated and participate in the BEC formation process

Bose-Einstein distribution function is crucial for the quantitative description of the condensation

LPE YIG film from Innovent e.V., Jena

C. Dubs, et al., J. Phys. D: 50, 204005 (2017)

7 nm Pt film deposited via MBE

• Damping YIG/Pt : $\alpha = 1.2 \times 10^{-3}$

• Dual angle etching of microstructures

Time-resolved microfocused BLS setup

 $\alpha = 2.6 \times 10^{-4}$

YIG film thickness : 70 nm

Deposition of Au contacts

without wavenumber resolution

Damping YIG :

Experimental setup

M. Schneider, et al., Nat. Nanotechnol. 15, 457 (2020)

Burkard Hillebrands

SPICE Workshop "Coherent order and transport in spin-active systems"

BEC in rapidly cooled magnon gas

Damon-Eshbach geometry

M. Schneider, et al., Nat. Nanotechnol. 15, 457 (2020)

Burkard Hillebrands	SPICE Workshop "Coherent order and transport in spin-active systems"	November 19, 2020	14
---------------------	--	-------------------	----

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Temporal dynamics of chemical potential and minimal magnon frequency

Magnon condensates in confined systems

Morteza Mohseni

+

Philipp Pirro

Arne Brataas

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Parametric excitation of magnons in a YIG microconduit

Onset of four-magnon scattering

Four-magnon scattering threshold is not overcome

Magnon condensation in microconduits

M. Mohseni, et al, New J. Phys. 22, 083080 (2020)

Burkard Hillebrands	SPICE Workshop "Coherent order and transport in spin-active systems"	November 19, 2020	21

Relaxation and thresholds

- Decay time of parametrically excited magnons: 5ns
- Decay time of condensed magnons: 100ns

- Parametric generation threshold
- Four-magnon scattering
- Magnon condensation

M. Mohseni, et al, New J. Phys. 22, 083080 (2020)

Burkard Hillebrands	SPICE Workshop "Coherent order and transport in spin-active systems"	November 19, 2020	23

Experimental investigations of BEC in a waveguide

- 1µm-wide YIG waveguide, 85nm thickness, Backward Volume Mode geometry
- Microwave pumping frequency f_p = 4.2 GHz
- Pumping power P_p = 20 dBm

Summary

- First experimental evidence of a magnon BEC caused by rapid cooling of a magnetic nano-structure (magnon injection on time scale)
- The injection mechanism is originally incoherent and can be applied to other bosonic systems
- Magnon condensation in microconduits is demonstrated using micromagnetic simulations and confirmed by the first experimental investigations

Outlook

- New ways to create the magnon BEC in magnetic nanostructures (rapid cooling, spin pumping)
- Spin transport by magnon supercurrents in 2D magnetic landscapes
- Non-viscose propagation of the magnon BEC
- Computing with two-component magnon condensates
- Qubit representation using macroscopic magnonic quantum states

