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Platforms for Majorana physics

Two-dimensional materials

Semiconductors Ferromagnetic atomic chains

Science 346.6209 (2014): 602-607Science 336.6084 (2012): 1003-1007

arXiv:2002.02141 (2020)

Fe-based superconductors

Science 362.6412 (2018): 333-335

Science 364.6447 (2019): 1255-1259

Topological insulators

Nature 579, 523–527 (2020)

Heavy-fermion compounds

New materials open new venues for engineering and controlling Majorana physics
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Topological superconductivity with 
antiferromagnetic insulators

Build a topological superconductor with
– A conventional (s-wave) superconductor
– An antiferromagnetic insulator

The prize

Bringing a new solid state platform to realize
artificial topological superconductors
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How to build your own 
topological superconductor

Ingredients

● s-wave pairing

● Helical states

Objective: to realize a spinless superconductor

A. Y. Kitaev. Physics-Uspekhi, 44:131, 2001
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The initial problem

How can we get a topological phase
starting from a trivial insulator?

We need to create a “spinless” gapless state out of an insulator

Antiferromagnetic
gap

?????
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Behind the scenes

Manfred Sigrist Senna Luntama Päivi Törmä

Phys. Rev. Lett. 121, 037002 (2018)
Phys. Rev. Research 2, 023347 (2020)

arXiv:2011.06990 (2020)
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Today’s story

Topological superconductivity (TS)
in 3D AF insulators

Interaction-induced
TS in 2D AF insulators

The quantum many-body
1D limit

No interactions Mean-field interactions Purely quantum many-body

Phys. Rev. Lett. 121, 037002 (2018) Phys. Rev. Research 2, 023347 (2020)arXiv:2011.06990 (2020)



8

Creating a 2D topological 
superconductor with a 3D 

antiferromagnetic insulator
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Heterostructure for 2D TS in a
3D AF insulator

2d topological
superconductor
at the interface

Kinetic
energy

Antiferromagnetism

Superconductivity

Spin-orbit coupling
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Solitonic modes between
Dirac AF and SC

There will be two zero solutions

Sector #1
Up electron, down hole

Sector #2
Down electron, up hole

Total Hamiltonia, for an antiferromagnet with gaped Dirac points

Phys. Rev. X 5, 041042 (2015)

similar to a Jackiw-Rebbi soliton
Phys. Rev. D 13, 3398 (1976)



11

Emergence of interfacial modes, 
no spin-orbit coupling

Antiferromagnet Superconductor AF/SC heterostructure
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Interface states
between AF and SC

Superconducting solitonic excitations
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Topological superconductivity 
with spin-orbit coupling

Band structure Edge spectral function

Topological superconductivity showing gapless Majorana modes
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Adding spin-orbit coupling

Edge spectral function

The interface realizes a topological superconductor
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3D AF material
candidates, spinels

CoAl
2
O

4

Phys. Rev. B 95, 094404 (2017)Co atoms form a diamond lattice

Antiferromagnet forming a diamond lattice

Antiferromagnetic spinels
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Dirac lines in the absence of spin-orbit coupling and magnetism

Antiferromagnets whose paramagnetic state hosts Dirac lines

3D AF material
candidates, Dirac materials

Phys. Rev. Lett. 115, 036806 (2015)
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Interaction-induced
1D topological 

superconductivity in 2D 
antiferromagnets
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Topological superconductivity 
driven by interactions

Kinetic
energy

Antiferromagnetism

Superconductivity

Repulsive interactions

Can we get topological superconductivity
just driven by repulsive electronic interactions?

We will focus on a heterostructure between a
2D superconductor and a 2D superconductor
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Interface AF-SC modes

Gapless zero modes appear at the one-dimensional AF-SC interface
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Interactions in the model

What happens when we now include interactions in whole system?

Could there be an interaction-induced
gap opening of the interface modes?

We will solve a model with repulsive
long-range interactions at the mean-field level
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Impact of interactions
Without interactions With interactions

Including repulsive interactions opens up a topological gap in the solitonic modes

Interaction-induced
spin-orbit coupling
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Interaction-induced gap 
VS interaction strength

The interaction-induced gap saturates to        , the gap of the s-wave superconductor

Dependence of the topological gap with respect to first and second neighbor interactions
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Topological superconductivity 
without a critical interaction

A topological gap opens up for arbitrarily small interactions

Topological gap VS interaction strength
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Majorana zero modes

Majorana zero modes emerge at the edge due to electronic interactions

Spectral function at zero energy, featuring Majorana edge modes
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AF material candidates

 InCu
2/3

V
1/3 

O
3 Phys. Rev. B 78, 024420 (2008)

Antiferromagnetic honeycomb oxides

β-Cu2V
2
O

7

 
Phys. Rev. B 82, 144416 (2010)

2D van der Waals materials
(strained)

Phys. Rev. B 98, 144411 (2018) 
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Many-body excitations in 
quantum antiferromagnet-
superconductor junctions
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Diving into the quantum
many-body regime

Quantum antiferromagnet (many-body solution)

Stagger antiferromagnet (mean-field solution)

Hubbard interaction

What happens at interfaces between a quantum
many-body 1D antiferromagnet and a superconductor?
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Superconductor-quantum 
antiferromagnet junction

We will solve the interacting model exactly using the tensor network formalism

Superconductor Quantum antiferromagnet

The ground state does not break time-reversal symmetry
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Many-body spectral function

DOS in the superconductor DOS in the quantum antiferromagnet

Both systems show an electronic gap when decoupled
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In-gap modes at the SC-quantum AF 
interface

Superconductor-quantum antiferromagnet junction

Superconductor Quantum antiferromagnet

Solitonic in-gap modes appear between the
superconductor and the quantum antiferromagnet
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Back to single-particle
solitonic zero modes

Single particle limit (stagger magnetization and no interactions)

How are these modes connected to the many-body in-gap mode from before?

Soliton
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From many-body to the single-
particle symmetry broken state

Switching on a magnetization pushes the interacting model to the symmetry broken state

Sketch of the charge excitations
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From many-body to symmetry 
broken

AntiferromagnetInterface

The solitonic single-particle mode transforms into the many-body in-gap mode
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Experimental realization with 
atomically engineered lattices

Science 335.6065 (2012): 196-199
Nature Physics 12, 656–660 (2016)
Rev. Mod. Phys. 91, 041001 (2019)
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Take home

Phys. Rev. Lett. 121, 037002 (2018) Phys. Rev. Research 2, 023347 (2020)arXiv:2011.06990 (2020)

Thank you!
Funding from

Antiferromagnet-superconductor junctions provide a powerful 
platform to engineer solitons, unconventional superconductors and 
robust many-body excitations.
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