Long-Range Phonon Spin Transport

Rembert Duine

Institute for Theoretical Physics, Utrecht University Department of Applied Physics, Eindhoven University of Technology QuSpin, NTNU

Universiteit Utrecht

TUe Technische Universiteit Eindhoven University of Technology

Phys. Rev. B 101, 104402 (2020); Phys. Rev. Lett. 124, 117201 (2020)

Long-term motivation

See e.g. Sonin (2010)

Non-local spin transport in metals/semi-conductors

electron spin accumulation: $\mu_s \propto e^{-x/\ell_s}$

non-local resistance:
$$R_{
m NL}\sim rac{V_{
m NL}}{I_{
m INJ}}\propto e^{-L/\ell_s}$$

spin-diffusion length: $\ell_s \sim \mathrm{nm} - \mu \mathrm{m}$

From Wei Han et al., JMMM **324**, 369 (2012)

Cornelissen, ..., RD, et al., Nature Physics 11, 1022 (2015); for AFMs: Lebrun, ..., RD, et al., Nature 561, 222 (2018)

Non-local spin transport though magnetic insulators

magnon spin accumulation: $\mu_m \propto e^{-x/\ell_m}$

non-local resistance: $R_{\rm NL} \sim V/I \propto e^{-L/\ell_m}$

magnon spin diffusion length: $\ell_m \sim 10~\mu{\rm m}~$ YIG @ room T

General view

- Electrons (100's nm)
- Magnons (10's μm)
- This talk: phonons (mm's)

Collaborators

Andreas Rueckriegel (Utrecht -> Frankfurt) Simon Streib (Uppsala) Gerrit Bauer (Sendai, Groningen)

Andreas

European Research Council

Phonon spin

 Role of phonons in Einstein-de Haaslike effects

Phonon spin

 Role of phonons in Einstein-de Haaslike effects

Circularly-polarized phonons carry spin angular momentum

PHONON SPIN

S. V. Vonsovskii and M. S Svirskii

Institute of Metal Physics, Academy of Sciences, USSR, Sverdlovsk; Chelyabinsk Pedagogical Institute Translated from Fizika Tverdogo Tela, Vol. 3, No. 7, pp. 2160-2165, July, 1961 Original article submitted March 18, 1961

Vonsovskii, Svirskii (1962), Levine (1962); Zhang, Niu (2014); Picture above: Garanin, Chudnovsky (2015), Nakane, Kohno (2018), Streib, Keshtgar, Bauer (2018), Juraschek, Spaldin (2019).

Experimental detection phonon spin (I)

dispersion relation:

Holanda et al, Nat. Phys (2018)

Experimental detection phonon spin (II)

set-up:

magnon-phonon conversion:

- d С 5 x = 0.25 Lx = 0x = 0.5 Lf (GHz) f(GHz) f (GHz) m 3 3 2 L 10¹ 10³ 10⁴ 10^{3} 10² 10³ 10^{2} 10⁵ 10¹ 10^{2} 10⁴ 10⁵ 10¹ 10⁴ 10⁵ k (cm⁻¹) $k \,({\rm cm}^{-1})$ k (cm⁻¹ 0.8 f H (kOe) 0. $H_0 = 0.240 \text{ kOe}$ 0.4 0.2 └ 0.0 0.2 0.4 0.6 0.8 1.0 x/L_x
- Excitation of magnon (spin $\approx \hbar$) Conversion to phonon Measurement of phonon polarization

Holanda et al, Nat. Phys (2018)

Phonon spin

 Role of phonons in Einstein-de Haaslike effects

- Phonon spin
- Role of phonons in Einstein-de Haaslike effects

Einstein, de Haas (1915); picture from Matsuo et al. (2015); modern experiments: detection of compensation point via Barnett effect & spin Seebeck mechanical force (Saitoh group, 2019); classical theory: Assmann/Novak (2019); see also Mentink et al. (2019).

Einstein-de Haas effect

conservation of energy: $\mu_0 M_s BV \gg \Omega^2/I$ because $I \propto V^{5/3}$ \longrightarrow Need reservoir = phonons & their spin! $\Omega \propto V^{-2/3}$

Microscopic theory of Einstein-de Haas-like effects

- Starting point: rotation-invariant Hamiltonian for magnetic insulator
- Split mechanical motion into global rotation & translation + phonons
- Coupled Heisenberg equations for spins, lattice and global rotations
- Approximate as quantum-kinetic theory for magnons and phonons, coupled to magnetization dynamics and global rotation
- Solve by making ansatz in terms of phonon temperature & drift velocity: magnon temperature and chemical potential:

 $\begin{array}{c} \delta T_{\perp}(t), \delta T_{\parallel}(t), v(t) \\ \delta T_{m}(t), \mu(t) \end{array}$

• From this, compute change in spin density, phonon spin density and global rotation: $\delta s(t), \delta l(t), \Omega^{z}(t)$ Phys. Rev. B 101, 104402 (2020)

Results (I)

- Initial condition: heating due to laser pulse, angular momentum conserved
- Magnons and longitudinal phonons equilibrate first
- Phonon spin and global rotation compensate for decrease in magnetization

See Schneider et al., Nature Nano. (2020), for a similar scenario to achieve BEC

Results (II)

- Initial condition: parallel pumping, angular momentum conserved
- Magnons and longitudinal phonons equilibrate first
- Phonon spin and global rotation result due to equilibration with magnons
- Phonon spin large, global rotation changes sign

Results (III)

- Initial condition: (optical) spin injection into phonons
- Magnons and longitudinal phonons equilibrate first
- Magnon spin hardly changes, phonons and global rotation dominate

- Phonon spin
- Role of phonons in Einstein-de Haaslike effects

Phonon spin

 Role of phonons in Einstein-de Haaslike effects – conclusion: phonons & their spin important, but what can we do with them?

Phonon spin

 Role of phonons in Einstein-de Haaslike effects – conclusion: phonons & their spin important, but what can we do with them?

- Incoherently driven magnetic reservoirs
- Non-magnetic insulator
- Spin transfer due to magnetoelastic interactions
- Theorical approach: coupled stochastic equations for magnetic and lattice dynamics

Spin-conductance & resonance condition

for small bias:

$$I_{L \to R} = \sigma(\mu_R - \mu_L)$$

resonance condition

 $L/(\tilde{\lambda}/2) + 2d/(\lambda/2) = \text{integer}$

- YIG and GGG parameters
- Decay length ~ 1 mm

Phonon spin accumulation & spin current

- Same order of magnitude as spin density related to magnetization
- (Quasi-)equilibrium phonon spin accumulation and phonon spin currents

Experiments in coherent regime

FMR experiment, coherent coupling

An et al. Phys. Rev. B (2020), motivated by Streib et al. (2018)

Conclusion

- Electrons (100's nm); limited by spin-orbit and disorder
- Magnons (10's μm); limited by magnetic quality
- This talk: phonons (mm's); limited by acoustic quality
 Experiments?!

Long-term motivation

Superfluid transport of angular momentum without magnetization

Sonin (2010)

Conclusion

- Electrons (100's nm); limited by spin-orbit and disorder
- Magnons (10's μm); limited by magnetic quality
- This talk: phonons (mm's); limited by acoustic quality
 Experiments?!