

Macroscopic magnonic quantum states

Burkard Hillebrands

Fachbereich Physik and Landesforschungszentrum OPTIMAS Technische Universität Kaiserslautern, Germany

European Research Council Established by the European Commission

www.physik.uni-kl.de/hillebrands

Kaiserslautern

Alexander Kreil

Halyna Musiienko-Shmarova

Morteza Mohseni

Michael Schneider

Philipp Pirro

Vasyuchka

Oleksandr Serha

Dmytro Bozhko (now Univ. of Colorado)

Andrii Chumak (now Univ. of Vienna)

Collaborators

- Victor L'vov and Anna Pomyalov (Weizmann Institute of Science, Israel)
- Gennadii Melkov (Taras Shevchenko National University of Kyiv, Ukraine)
- Andrei Slavin and Vasyl Tiberkevich (Oakland University, USA)

Macroscopic quantum states

Main idea: find macroscopic magnonic quantum states for information transfer and processing

- analogous to superconductivity (Josephson currents) and to superfluidity in ³He and ⁴He
- free of dissipation (apart from magnon-phonon and magnon-electron coupling)

This talk:

 From magnon Bose-Einstein Condensates (BEC) and supercurrents to Josephson oscillations in a room-temperature magnon BEC

Why do we name this a "Macroscopic Quantum State" ?

Microscopic quantum phenomena

Wave-particle duality \rightarrow Microscopic scale of the system is comparable with the de Broglie wavelength of particles (electrons, Bose atoms, etc.)

Macroscopic quantum phenomena

Wave-particle duality \rightarrow Macroscopic scale of the system is comparable with the coherence length of the de Broglie wave

- Bose-Einstein condensate (BEC) of particles spontaneous population by a large number of Bose particles of a single quantum state with macroscopically-large coherence length
- BECs of magnons (quanta of spin waves) spontaneous formation of a coherent wave in a chaotic magnon system
- In **quasi-classical limit** (large number of particles and occupation numbers of magnons) described by the Gross-Pitaevskii equation for de Broglie or spin waves

Properties of both types of condensates are almost identical

"Macroscopic Quantum Phenomena"

make use of analogy with numerous phenomena in Bose-Einstein condensates of atoms: supercurrent, Bogoliubov waves, Josephson effects

Magnon as a quanta of spin-wave

Energy

$$\varepsilon = \hbar \omega = \frac{\eta}{\hbar} p^2$$

- Momentum $\vec{p} = \hbar \vec{q}$
- Mass $m=\hbar/(2\eta)$
- Spin *s* = 1

Magnon gas

(

(Non-)linear Processes

Burkard Hillebrands

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Online SPICE-SPIN+X Seminar

Magnon Bose-Einstein condensation

Bose-Einstein distribution

$$\rho(\omega) = \frac{D(\omega)}{\exp\left(\frac{\hbar\omega - \mu}{k_{\rm B}T}\right) - 1}$$

μ: chemical potential

External injection of magnons beyond the thermal equilibrium level (about 3%) increases the chemical potential to the bottom of magnon spectrum and leads to Bose-Einstein condensation scenario even at room temperature

S.O. Demokritov et al., Nature 443, 430 (2006)

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Medium: Yttrium Iron Garnet (YIG, Y₃Fe₅O₁₂)

- Room temperature ferrimagnet $(T_{\rm C} = 560 \text{ K})$
- Low phonon damping
- The lowest magnon damping of any known material !

Scientific Research Company "Carat", Lviv, Ukraine

- Cubic crystal
- Lattice constant 12.376 Å
- Unit cell 80 atoms

V. Cherepanov, I. Kolokolov, and V. L'vov, The saga of YIG: spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet Phys. Rep. **229**, 81–144 (1993)

A.J. Princep *et al., The full magnon spectrum of yttrium iron garnet,* npj Quantum Mater. **2**, 63 (2017)

Minority octahedral iron atoms (spin 5/2 down) Majority tetrahedral iron atoms (spin 5/2 up)

Magnetic moment of a unit cell is 20 Bohr magnetons μ_B at zero temperature

Burkard Hillebrands

Online SPICE-SPIN+X Seminar

Magnon spectrum of in-plane magnetized YIG film

Burkard Hillebrands

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Control of magnon gas density by parametric pumping

Energy and momentum conservation laws for parametric pumping

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Online SPICE-SPIN+X Seminar

Control of magnon gas density by parametric pumping

Energy and momentum conservation laws for parametric pumping

TECHNISCHE UNIVERSITÄT

Wavenumber q (×10⁵ rad/cm)

Burkard Hillebrands

Bose-Einstein

distribution

 $\rho(f) = \frac{1}{\exp\left(\frac{hf}{k_{\rm B}T}\right) - 1}$

Bose-Einstein condensation of magnons

Energy and momentum conservation laws for parametric pumping

Wavenumber q (×10⁵ rad/cm)

Burkard Hillebrands

Bose-Einstein

distribution

 $\rho(f) = \frac{1}{\exp\left(\frac{hf}{k_{\rm B}T}\right) - 1}$

Time-, space- and wavevector-resolved pulsed BLS spectroscopy

Resolution	
Time	1 ns
Frequency	50 MHz
Wavenumber	2×10 ³ cm ⁻¹
Space	5 µm

(111) LPE YIG films	5 - 7 µm
Width of the pumping area	50 and 500 μm
Length of the pumping area	1 mm
Maximum microwave power	100 W

Burkard Hillebrands

Online SPICE-SPIN+X Seminar

Microwave-free creation of a magnon BEC

Are there other ways how to create a magnon BEC state in YIG?

• Yes, by rapid cooling of a magnon-carrying specimen

Platinum covered YIG stripe

High-energy magnon states are populated and participate in the BEC formation process

Bose-Einstein distribution function is crucial for the quantitative description of the condensation

BEC in rapidly cooled magnon gas

M. Schneider, *et al.*, Nat. Nanotechnol. **15**, 457 (2020)

Magnon BEC: Experiment

Magnon BEC: Experiment

Supercurrent in magnon BEC

Supercurrent: Flow of particles due to phase gradient of the condensate's wavefunction

Dynamics of condensed magnons in thermal gradient

Dynamics of condensed magnons in thermal gradient - comparison with theory

Supercurrent and anisotropy of spin-wave spectrum

$$J_{x} = N_{c}D_{x}\frac{\partial\varphi}{\partial x}$$
$$J_{y} = N_{c}D_{y}\frac{\partial\varphi}{\partial y}$$

$$D_{x} = \frac{1}{2} \frac{\partial^{2} \omega(\vec{q})}{\partial q_{x}^{2}}$$
$$D_{y} = \frac{1}{2} \frac{\partial^{2} \omega(\vec{q})}{\partial q_{y}^{2}}$$

 $D_x \simeq 21 D_y$

Non-local measurement: Supercurrent magnon transport

Non-local measurement: Supercurrent magnon transport

Heating laser switched off

Heating laser power 116 mW

Second sound scenario

Framework: Gross-Pitaevskii equation

$$\left[i\frac{\partial}{\partial t} + \mathbf{D}_x\frac{\partial^2}{\partial x^2} - W |\psi|^2\right]\psi = \mathbf{0}$$

Dispersion coefficient

$$D_x = \frac{1}{2} \frac{\partial^2 \omega(\vec{q})}{\partial q_x^2}$$

Amplitude of four-wave
repulsive interactionW > 0

Dzyapko et al., Phys. Rev. B 96, 064438 (2017)

Stationary solution: $\psi(x,t) = \sqrt{N_c} \exp(-iWN_c t)$

Magnon BEC density: N_c

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Second sound scenario

Framework: Gross-Pitaevskii equation

$$\left[i\frac{\partial}{\partial t} + \frac{D_x}{\partial x^2} - W |\psi|^2\right]\psi = 0$$

Dispersion coefficient

$$D_x = \frac{1}{2} \frac{\partial^2 \omega(\vec{q})}{\partial q_x^2}$$

Amplitude of four-wave **repulsive** interaction

W > **0**

Dzyapko et al., Phys. Rev. B 96, 064438 (2017)

Stationary solution: $\psi(x,t) = \sqrt{N_c} \exp(-iWN_c t)$

Magnon BEC density: N_c

Solution: Bogoliubov waves $\Omega(k)$ (second sound)

$$\Omega(k) = c_{\rm s} k \sqrt{1 + D_{\rm x} k^2 / 2W N_{\rm c}}$$

Long-wavelength limit

limit
$$D_x k^2 \ll 2WN$$

 $Q(k) = c_s k$
 $Q(k) = c_s k$
Second sound velocity

С

$$c_{\rm s} = \sqrt{2D_x W N_{\rm c}}$$

Second sound scenario

$$\Omega(k) = c_{\rm s}k, \quad c_{\rm s} = \sqrt{2D_{\rm x}WN_{\rm c}}$$

 The sound velocity c_s must be independent on the excitation conditions i.e. the heating laser power, which determine the BEC pulse width

D. A. Bozhko et al., Nat. Commun. 10:2460 (2019)

Second sound scenario

$$\Omega(k) = c_{\rm s}k, \quad c_{\rm s} = \sqrt{2D_{\rm x}WN_{\rm c}}$$

- The sound velocity c_s must be independent on the excitation conditions i.e. the heating laser power, which determine the BEC pulse width
- During the pulse propagation, the amplitude of the background condensate decays and the sound velocity also has to decay

The sound velocity decrease is clear visible from parabolic fits !

Smaller decrease of the sound velocity than expected from the decay of the condensate

Low decay of the propagating BEC pulse due to an efficient gathering of surrounding magnons

D. A. Bozhko *et al.*, Nat. Commun. **10**:2460 (2019)

Online SPICE-SPIN+X Seminar

Second sound in an incoherent magnon gas

General two-fluid model of a magnon gas combined with the Gross-Pitaevskii equation for the magnon BEC needs to be developed

Burkard Hillebrands

Online SPICE-SPIN+X Seminar

July 29, 2020 28

Two-component magnon BEC

BLS intensities of the Stokes and anti-Stokes spectral peaks are related to the densities of magnons with wavenumbers $+q_{min}$ and $-q_{min}$ (for fixed angle of wavevector-resolved BLS setup)

 $\omega_{\text{scattered L}} = \omega_{\text{L}} \mp \omega_{\text{min}}$ $\vec{q}_{\text{scattered L}} = \vec{q}_{\text{L}} \mp \vec{q}_{\text{min}}$

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Magnon condensate density in a magnetic trench

Josephson oscillations in magnon condensate

- (1) time, when magnons are excited by parametric pumping
- (2) time interval during which the BEC forms
- (3) time interval during which the first oscillation appears

(4) the rest of the observation time

A.J.E. Kreil et al., arXiv:1911.07802v1 (2019)

Time-dependence of spatial magnon distributions in magnetic trench

Time intervals

l = - 500 mA

A.J.E. Kreil et al., arXiv:1911.07802v1 (2019)

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Josephson oscillations in magnon condensate

time, when magnons are excited by parametric pumping

(2) time interval during which the **BEC forms**

(3) time interval during which the first oscillation appears

(4) the rest of the observation time

100

0

Position (µm)

Josephson oscillations in magnon condensate

Josephson oscillations in magnon condensate

Frequency of the Josephson oscillations is in semi-quantitative agreement with the prediction of theory

A.J.E. Kreil et al., arXiv:1911.07802v1 (2019)

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Magnon BEC in confined systems

Magnon BEC during relaxation

M. Mohseni, et al, New J. Phys., In press (2020)

Parallel pumping and magnon scattering processes

Summary

- Non-local spin transport by magnon supercurrent in a room-temperature magnon BEC
- Bogoliubov second sound scenario for the distant supercurrent propagation
- Josephson oscillations in a room-temperature Bose-Einstein magnon condensate observed
- Advancing of the physics of room-temperature macroscopic quantum phenomena for their application in magnon spintronics devices

- Spin transport by magnon supercurrent in 2D magnetic landscapes
- New ways to create the magnon BEC (rapid cooling, spin pumping)
- Non-viscose propagation of the magnon BEC
- Interference of Bogoliubov waves
- Computing with two-component magnon condensates
- Qubit representation using macroscopic magnonic quantum states

Outlook

Appendix: phase of supercurrent in magnon BEC

Supercurrent: Flow of particles due to phase gradient of the condensate's wave function

Complex BEC wave Ψ_{p} function of particles: Particle BEC density: Nr Particle BEC phase: φ_{p}

$$p_{p}(\boldsymbol{r},t)$$

$$p_{p} = \left|\Psi_{p}\right|^{2}$$

$$p_{p} = \arg \Psi_{p}$$

Supercurrent of particles

$$\boldsymbol{J}_{\mathrm{p}}(\boldsymbol{r},t) = \frac{\hbar}{M_{\mathrm{p}}} N_{\mathrm{p}} \nabla \boldsymbol{\varphi}_{\mathrm{p}}$$

Complex BEC wave function of magnons: $\Psi_{\rm m}(\mathbf{r},t) = C_{\rm m}(\mathbf{r},t) \exp[i(\mathbf{q}_0 \cdot \mathbf{r} - \omega_0 t)]$ $C_{\rm m}(\mathbf{r},t) = \sqrt{N_{\rm m}} \exp(i\varphi_{\rm m})$ Magnon BEC density $N_{\rm m}$ and phase $\varphi_{\rm m}$:

Phase $\varphi_{\rm m}$ of a spatially heterogeneous condensate at position r: we take the deviation of the angle of rotation of the spin at this position from the rotation for the case of a fully monochromatic spatially coherent spin wave. Thus, the phase of a spatially homogeneous condensate is zero.

7

6

5

Frequency ω (2 π GHz)

Appendix: phase of supercurrent in magnon BEC

Supercurrent: Flow of particles due to phase gradient of the condensate's wave function

Complex BEC wave
function of particles: $\Psi_p(r, t)$ Particle BEC density: $N_p = |$ Particle BEC phase: $\varphi_p = a$

 $\Psi_{\rm p}(\boldsymbol{r}, t)$ $N_{\rm p} = |\Psi_{\rm p}|^2$ $\varphi_{\rm p} = \arg \Psi_{\rm p}$

Supercurrent of particles

$$\boldsymbol{J}_{\mathrm{p}}(\boldsymbol{r},t) = \frac{\hbar}{M_{\mathrm{p}}} N_{\mathrm{p}} \nabla \boldsymbol{\varphi}_{\mathrm{p}}$$

Complex BEC wave function of magnons: $\Psi_{\rm m}(\mathbf{r},t) = C_{\rm m}(\mathbf{r},t) \exp[i(\mathbf{q}_0 \cdot \mathbf{r} - \omega_0 t)]$ Magnon BEC density $N_{\rm m}$ and phase $\varphi_{\rm m}$: $C_{\rm m}(\mathbf{r},t) = \sqrt{N_{\rm m}} \exp(i\varphi_{\rm m})$

$$\begin{cases} \frac{\partial N_{\rm m}(\boldsymbol{r},t)}{\partial t} \approx \frac{\partial |\mathcal{C}_{\rm m}(\boldsymbol{r},t)|^2}{\partial t} = \frac{\partial \mathcal{C}_{\rm m}(\boldsymbol{r},t)}{\partial t} \mathcal{C}_{\rm m}^*(\boldsymbol{r},t) + \mathcal{C}_{\rm m}(\boldsymbol{r},t) \frac{\partial \mathcal{C}_{\rm m}^*(\boldsymbol{r},t)}{\partial t} \\ \left[i \frac{\partial}{\partial t} + i v_{\rm gr} \nabla + \frac{1}{2} \omega_{ij}^{\prime\prime} \nabla_i \nabla_j - T |\mathcal{C}_{\rm m}(\boldsymbol{r},t)|^2 \right] \mathcal{C}_{\rm m}(\boldsymbol{r},t) = 0 \quad \leftarrow \text{Gross-Pitaevskii equation} \\ \frac{\partial N_{\rm m}(\boldsymbol{r},t)}{\partial t} + \nabla J_{\rm m} = 0 \qquad v_{\rm gr} = \frac{d\omega(\boldsymbol{q})}{d\boldsymbol{q}} \Big|_{\boldsymbol{q}=\boldsymbol{q}_0} \quad \omega_{ij}^{\prime\prime} = \frac{d^2 \omega(\boldsymbol{q})}{d\boldsymbol{q}_i d\boldsymbol{q}_j} \Big|_{\boldsymbol{q}=\boldsymbol{q}_0} \\ \frac{\partial N_{\rm m}(\boldsymbol{r},t)}{\partial t} + \nabla J_{\rm m} = 0 \qquad v_{\rm gr} = \frac{d\omega(\boldsymbol{q})}{d\boldsymbol{q}} \Big|_{\boldsymbol{q}=\boldsymbol{q}_0} \qquad \omega_{ij}^{\prime\prime} = \frac{d^2 \omega(\boldsymbol{q})}{d\boldsymbol{q}_i d\boldsymbol{q}_j} \Big|_{\boldsymbol{q}=\boldsymbol{q}_0} \end{cases}$$

Burkard Hillebrands

5

 $\boldsymbol{v}_{\rm gr} = 0$

Wavenumber q (10⁴ rad cm⁻¹)

10

5

Magnon

BEC

Online SPICE-SPIN+X Seminar

July 29, 2020 40