

Axel Hoffmann

Department of Materials Science and Engineering University of Illinois at Urbana-Champaign

SPICE-SPIN+X, August 26, 2020

MAGNETIC MATCHMAKING: HYBRID MAGNON MODES

Axel Hoffmann

Department of Materials Science and Engineering University of Illinois at Urbana-Champaign

SPICE-SPIN+X, August 26, 2020

MAGNETIC MATCHMAKING: HYBRID MAGNON MODES

Axel Hoffmann

Department of Materials Science and Engineering University of Illinois at Urbana-Champaign

SPICE-SPIN+X = XICE

OUTLINE

Introduction

- On-chip magnon-photon coupling with superconducting resonator
- Magnon-magnon coupling in magnetic bilayer thin film
- Manipulating phonon transport with

magnons

Conclusions

OUTLINE

Introduction

- On-chip magnon-photon coupling with superconducting resonator
- Magnon-magnon coupling in magnetic bilayer thin film
- Manipulating phonon transport with magnons
- Conclusions

Moore's Law

Moore's Law

Moore's Law

8

Moore's Law

COMPUTING OF TODAY

COMPUTING OF TODAY

COMPUTING OF TOMORROW (MAYBE)

Quantum computing

COMPANIES > GOOGLE (ALPHABET)

Google Says Quantum Computer Beat 10,000-Year Task in Minutes

Kurizki, et al. PNAS 112, 3866 (2015)

Kurizki, et al. PNAS 112, 3866 (2015)

X. Zhang et al. PRL 113, 156401 (2014)

X. Zhang et al. PRL 113, 156401 (2014)

X. Zhang et al. PRL 113, 156401 (2014)

Uniform mode (k=0)

Landau-Lifshitz-Gilbert equation:

$$\frac{d\mathbf{m}}{dt} = -\gamma \mathbf{m} \times \mathbf{H}_{\text{eff}} + \alpha \mathbf{m} \times \frac{d\mathbf{m}}{dt}$$

Uniform mode (k=0)

Landau-Lifshitz-Gilbert equation:

$$\frac{d\mathbf{m}}{dt} = \left[-\gamma\mathbf{m} \times \mathbf{H}_{eff}\right] + \alpha\mathbf{m} \times \frac{d\mathbf{m}}{dt}$$

Uniform mode (k=0)

Landau-Lifshitz-Gilbert equation:

$$\frac{d\mathbf{m}}{dt} = -\gamma \mathbf{m} \times \mathbf{H}_{eff} + \alpha \mathbf{m} \times \frac{d\mathbf{m}}{dt}$$

Gyromagnetic ratio: $\gamma/2\pi \sim 28$ GHz/Tesla Gilbert damping: $\alpha \sim 10^{-3}$

(Q factor~ $1/\alpha$)

Spin wave (k>0)

Spin wave (k>0)

Magnon dispersion:

 $\omega = \gamma H_{eff} + Dk^2$

D: Exchange constant (magnon: $Dk^2 \sim 3$ GHz for $\lambda \sim 100$ nm)

Spin wave (k>0)

Magnon dispersion:D: Exchange constant
(magnon:
$$Dk^2 \sim 3$$
 GHz for $\lambda \sim 100$ nm) $\omega = \gamma H_{eff} + Dk^2$ (Photon/phonon dispersion:)(Photon/phonon dispersion:)(photon: $\omega \sim 3$ GHz for $\lambda \sim 100$ mm)
(phonon: $\omega \sim 3$ GHz for $\lambda \sim 1 \mu$ m) $\omega = ck$

Spin wave (k>0)

Small + more flexible

Magnon dispersion:D: Exchange constant
(magnon: $Dk^2 \sim 3$ GHz for $\lambda \sim 100$ nm) $\omega = \gamma H_{eff} + Dk^2$ (photon: $\omega \sim 3$ GHz for $\lambda \sim 100$ nm)
(phonon: $\omega \sim 3$ GHz for $\lambda \sim 100$ nm)
(phonon: $\omega \sim 3$ GHz for $\lambda \sim 1 \mu$ m)

Advantage of Magnons for coherent information processing:

• Strong Coupling (sub-GHz)

Advantage of Magnons for coherent information processing:

- Strong Coupling (sub-GHz)
- Quantum Transduction

Advantage of Magnons for coherent information processing:

- Strong Coupling (sub-GHz)
- Quantum Transduction
- Wave Propagation

Magnonic logic

Advantage of Magnons for coherent information processing:

- Strong Coupling (sub-GHz)
- Quantum Transduction
- Wave Propagation
- On-chip Integration

Microwave quantum circuits

QUANTUM MAGNONICS

Y. Tabuchi et al. Science 349, 405 (2015) D. Lachance-Quirion, et al. Science 367, 425 (2020)
QUANTUM MAGNONICS

Goal of quantum magnonics: microwave quantum circuits

OUTLINE

Introduction

- On-chip magnon-photon coupling with superconducting resonator
- Magnon-magnon coupling in magnetic bilayer thin film
- Manipulating phonon transport with

magnons

Conclusions

Most previous demonstrations: <u>Bulk FM (YIG)</u> or <u>3D cavity</u>

Tabuchi et al. PRL 113, 083603 (2014) Bai et al. PRL 114, 227201 (2015) Morris et al. Sci. Rep. 7, 11511 (2017)

ON-CHIP MAGNON-PHOTON HYBRID SYSTEM

Coplanar superconducting resonator

ON-CHIP MAGNON-PHOTON HYBRID SYSTEM

Coplanar superconducting resonator

Photon system: NbN coplanar superconducting resonator

<u>Magnon system:</u> **Ni₈₀Fe₂₀** device (permalloy, Py)

• High T_c (14 K)

Large magnetization ($\mu_0 M_s = 1 T$)

Yi Li, et al. PRL 123, 107701 (2019)

٠

SUPERCONDUCTING CIRCUIT

SUPERCONDUCTING CIRCUIT

PHOTON SYSTEM: UNLOADED NbN SUPERCONDUCTING RESONATOR

(0 dBm = 1 mWatt) (-55 dBm = 4 nWatt)

PHOTON SYSTEM: UNLOADED NbN SUPERCONDUCTING RESONATOR

] [

PHOTON SYSTEM: UNLOADED NbN SUPERCONDUCTING RESONATOR

MAGNONS SYSTEM: Ni₈₀Fe₂₀ (Py) STRIPE

NbN resonator

T=1.4 K Yi Li, et al. P_{in}=-55 dBm PRL 123, 107701 (2019)

49

50

Photon damping rate: $\kappa_p/2\pi$ =2.0 MHz Q=2500 NbN resonator NbN resonator + Py device 4.96 Photon 4.94

P_{in}=-55 dBm

Photon damping rate: $\kappa_p/2\pi$ =2.0 MHz Q=2500 NbN resonator NbN resonator + Py device 5.08 4.96 Photon 4.94 5.06 (2H2 4.92 4.90 (CHZ) μ2/σ Magnon $S_{21}(dB)$ $S_{21}(dB)$ Hybrid -30 5.00 4.88 mode -40 -50 With Py $\theta = 0^{\circ}$ without Py 4,98 4.86 50 -50 50 -100-50 100 -100100 0 0 $\mu_0 H_B$ (mT) $\mu_0 H_B$ (mT) H_{B} magnon Coupling energy: $E = \mu_0 \vec{M} \cdot \vec{h}_{rf}$ HT=1.4 K Yi Li, et al. photon PRL 123, 107701 (2019) P_{in}=-55 dBm

TUNE COUPLING EFFICIENCY

TUNE COUPLING EFFICIENCY

NUMBER OF SPINS

62

NONLINEARITY FROM SUPERCONDUCTING VORTICES

NONLINEARITY FROM SUPERCONDUCTING VORTICES

NONLINEARITY FROM SUPERCONDUCTING VORTICES

OUTLINE

Introduction

- On-chip magnon-photon coupling with superconducting resonator
- Magnon-magnon coupling in magnetic bilayer thin film
- Manipulating phonon transport with magnons
- Conclusions

y Microwave quantum circuits

Χ

Magnon hybrid system

MAGNETIC BILAYER FOR COHERENT INFORMATION PROCESSING

Klingler et al. PRL 120, 127201 (2018) Chen et al. PRL 120, 217202 (2018) Qin et al. Sci. Rep. 8, 5755 (2018)

MAGNETIC BILAYER FOR COHERENT INFORMATION PROCESSING

Klingler et al. PRL 120, 127201 (2018) Chen et al. PRL 120, 217202 (2018) Qin et al. Sci. Rep. 8, 5755 (2018)

In-plane Kittel equation:

$$\frac{\omega}{\gamma} = \sqrt{H_B(H_B + M_s)}$$

Klingler et al. PRL 120, 127201 (2018) Chen et al. PRL 120, 217202 (2018) Qin et al. Sci. Rep. 8, 5755 (2018)

In-plane Kittel equation:

$$\frac{\omega}{\gamma} = \sqrt{H_B(H_B + M_S)}$$

Klingler et al. PRL 120, 127201 (2018) Chen et al. PRL 120, 217202 (2018) Qin et al. Sci. Rep. 8, 5755 (2018)

In-plane Kittel equation:

$$\frac{\omega}{\gamma} = \sqrt{(H_B + H_{ex})(H_B + M_s + H_{ex})}$$

$$\mu_0 H_{ex} = D_{ex} k^2$$

Perpendicular standing spin wave mode

$$k = \frac{n\pi}{t}$$

Klingler et al. PRL 120, 127201 (2018) Chen et al. PRL 120, 217202 (2018) Qin et al. Sci. Rep. 8, 5755 (2018)

In-plane Kittel equation:

$$\frac{\omega}{\gamma} = \sqrt{(H_B + H_{ex})(H_B + M_s + H_{ex})}$$

$$\mu_0 H_{ex} = D_{ex} k^2$$

Perpendicular standing spin wave mode

$$k = \frac{n\pi}{t}$$

Klingler et al. PRL 120, 127201 (2018) Chen et al. PRL 120, 217202 (2018) Qin et al. Sci. Rep. 8, 5755 (2018)

Structure: YIG(100 nm)/Py(5-60 nm)

Y₃Fe₅O₁₂ (YIG):

- Sputtering on Gd₃Ga₅O₁₂ (GGG)
- Post-annealing in air at 850°C

Ni₈₀Fe₂₀ (Py):

- Ion milling of YIG surface
- Sputtering of Py on YIG

Structure: YIG(100 nm)/Py(5-60 nm) H_B YIG (n=0)YIG (n=2)Py(n=0)

78

Y₃Fe₅O₁₂ (YIG):

- Sputtering on Gd₃Ga₅O₁₂ (GGG)
- Post-annealing in air at 850°C

Ni₈₀Fe₂₀ (Py):

- Ion milling of YIG surface
- Sputtering of Py on YIG

Py

• ω

79

Y₃Fe₅O₁₂ (YIG):

- Sputtering on Gd₃Ga₅O₁₂ (GGG)
- Post-annealing in air at 850°C

Ni₈₀Fe₂₀ (Py):

- Ion milling of YIG surface
- Sputtering of Py on YIG

Yi Li, et al. PRL 124, 117202 (2020)

Yi Li, et al. PRL 124, 117202 (2020)

YIG(100 nm)/Py(7.5 nm)

YIG(100 nm)/Py(7.5 nm)

YIG(100 nm)/Py(7.5 nm)

Yi Li, et al. PRL 124, 117202 (2020)

MACROSPIN MODEL: COHERENT COUPLING

91

Macrospin model:

 $\frac{d\mathbf{m}_i}{dt} = -\mu_0 \gamma_i \mathbf{m}_i \times \mathbf{H}_{eff} + \alpha_i \mathbf{m}_i \times \frac{d\mathbf{m}_i}{dt} \\ -\gamma_i \mathbf{m}_i \times \frac{J}{M_i t_i} \mathbf{m}_j + \Delta \alpha_i (\mathbf{m}_i \times \frac{d\mathbf{m}_i}{dt} - \mathbf{m}_j \times \frac{d\mathbf{m}_j}{dt})$

Fieldlike: exchange Dampinglike: spin pumping

MACROSPIN MODEL: COHERENT COUPLING

Macrospin model:

 $\frac{d\mathbf{m}_i}{dt} = -\mu_0 \gamma_i \mathbf{m}_i \times \mathbf{H}_{eff} + \alpha_i \mathbf{m}_i \times \frac{d\mathbf{m}_i}{dt} \\ -\gamma_i \mathbf{m}_i \times \frac{J}{M_i t_i} \mathbf{m}_j + \Delta \alpha_i (\mathbf{m}_i \times \frac{d\mathbf{m}_i}{dt} - \mathbf{m}_j \times \frac{d\mathbf{m}_j}{dt})$

Fieldlike: exchange Dampinglike: spin pumping

Solution:

Fieldlike: Dampinglike:

$$g_c = \sqrt{\frac{\mathbf{J}}{M_1 t_1} \cdot \frac{\mathbf{J}}{M_2 t_2}}$$
$$\kappa_c = \sqrt{\frac{\mathbf{J'}}{M_1 t_1} \cdot \frac{\mathbf{J'}}{M_2 t_2}}$$

 $J'(\omega) = \frac{g^{\uparrow\downarrow}}{4\pi} \hbar \omega$ g^{↑↓}: spin mixing conductance, ~ 42 nm⁻² for YIG/Py ₉₂ Yi Li, et al. PRL 124, 117202 (2020)

MACROSPIN MODEL: COHERENT COUPLING

$$\kappa_c(\omega) = \beta \mu_0 \Delta H_{sp}^{\rm Py}(\omega)$$

Antiferromagnetic coupling: $g_c < 0$

97

Yi Li, et al. PRL 124, 117202 (2020)

OUTLINE

Introduction

- On-chip magnon-photon coupling with superconducting resonator
- Magnon-magnon coupling in magnetic bilayer thin film
- Manipulating phonon transport with magnons

ELASTICALLY DRIVEN MAGNETIZATION DYNAMICS

Free Energy for magnetization with Surface Acoustic Wave (SAW):

$$F^{0}(\mathbf{m}) = -\mu_{0}\mathbf{H}\cdot\mathbf{m} + B_{d}m_{z}^{2} + B_{u}(\mathbf{u}\cdot\mathbf{m})^{2} + B_{1}\varepsilon(\mathbf{x},t)m_{x}^{2}$$

Zeeman Demagentizing Anisotropy Magnetoelastic

M. Weiler, et al. PRL 106, 117601 (2011)

ELASTICALLY DRIVEN MAGNETIZATION DYNAMICS

M. Weiler, et al. PRL 106, 117601 (2011)

FMR given by broad maxima

Why is the linewidth so large?

CAN MAGNONS MODIFY PHONON TRANSPORT?

127.86° Y-X-cut LiNbO₃ substrate 50-nm thick Ni film

Two types of devices

- As grown
- Annealed in vacuum at 400°C for 30 min.

C. Zhao, et al. PRAppl. 13, 054032 (2020)

DETECT FERROMAGNETIC RESONANCE

Annealed

C. Zhao, et al. PRAppl. 13, 054032 (2020)

PHONON TRANSMISSION

PHONON TRANSMISSION

C. Zhao, et al. PRAppl. 13, 054032 (2020)

PHONON TRANSMISSION

I. A. Privorotskii, IEEE Trans. Mag. **16**, 666 (1980)
$$E = E_0 \frac{v_f}{c} \frac{B_2^2}{C_{44}} \frac{\left|h_{eff}^{\perp}\right|}{\Delta H^2} (1+p^2)^{-\frac{1}{2}} [1+(p+\beta)^2]^{-\frac{1}{2}} \exp\left[\frac{-(\eta/2)}{1+(p+\beta)^2}\right] \left[1+\exp\left(\frac{-\eta_0 H}{2}\right)\right]$$

Includes both phonon attenuation and generation

 η Is proportional to magnetoelastic coupling

C. Zhao, et al. PRAppl. 13, 054032 (2020)

LINEWIDTH

FMR linewidth from fit agrees well with inductively measured FMR of Ni on LiNbO₃

Increased apparent linewidth in phonon transmission is due to magnon-phonon interaction and not due to extrinsic inhomogeneities

MAGNETIC FILMS GROUP AT ARGONNE

MAGNETIC FILMS GROUP AT ARGONNE

THANKS TO

Yi Li, Chenbo Zhao, Tomas Polakovic, Yong-Lei Wang, Jing Xu, Sergi Lendinez, Zhizhi Zhang, Junjia Ding, Trupti Kkaire, Hilal Saglam, Jonathan Giobbons, Michael Vogel, Ralu Divan, John E. Pearson, Wai-Kwong Kwok, Zhili Xiao, and Valentine Novosad

Argonne National Laboratory

Wei Zhang Oakland University

Wei Cao and William E. Bailey Columbia University

Vivek Amin, Paul M. Haney, and Mark D. Stiles National; Institute of Standards and Technology

Qingfang Liu

Huazhong University of Science and Technology

Financial Support DOE-BES Materials Science and Engineering Division

CONCLUSION

Magnon-photon

Magnon-magnon

Magnon-phonon

Yi Li, et al. PRL 123, 107701 (2019) Yi Li, et al. PRL 124, 117202 (2020) Chenbo Zhao, et al. PRAppl 13, 054032 (2020)

CONCLUSION

Magnon-photon

Magnon-magnon

H_B YIG(n=2) Py(n=0) h_{rf}

On-chip applications

Yi Li, et al. PRL 123, 107701 (2019) Yi Li, et al. PRL 124, 117202 (2020)

112

Chenbo Zhao, et al. PRAppl 13, 054032 (2020)_

KSAM

100 µm

IDT

Magnon-phonon

LiNbO₃

Ni film

IDT

