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Magnetism and technology have been inextricably linked 
for centuries—from the navigation compass, to motors 
and generators, to magnetic data storage. The field of 

information storage has been dominated by ferromagnetic materi-
als from its inception to the present day. Memories based on fer-
romagnets, such as magnetic tapes and hard disk drives, have been 
one of the key factors that enabled the information revolution. 
Antiferromagnetism, on the other hand, has played fleeting roles 
in the story of information technology so far, despite the fact that 
antiferromagnetic order is common in magnetic materials. Most of 
these roles have been as passive elements, such as for pinning or 
hardening of ferromagnet layers.

The main obstacle that has kept antiferromagnets away from appli-
cation is that they are hard to control and hard to read. While ferro-
magnetic order can be detected by the magnetic fields it creates, and 
in turn manipulated by an external magnetic field, antiferromagnets 
produce no fringing magnetic fields and are much less sensitive to 
them (although they can also be manipulated by large enough mag-
netic fields). So while antiferromagnets could be used for memories, 
just like ferromagnets, the difficulty of detecting and manipulating the 
antiferromagnetic order provided a seemingly insurmountable barrier.

While magnetic fields provide a practical way for detecting and 
manipulating ferromagnetic order, many other methods have been 
developed. Perhaps most importantly, electrical currents can now 
be used both for detection and switching of ferromagnetic order. 
Utilizing electrical currents instead of magnetic fields is more 
efficient and more scalable, and thus the latest magnetic random 
access memories rely entirely on electrical currents1. The possibility 
of using electrical currents instead of magnetic fields for detection 
and manipulation has inspired a renewed interest in antiferromag-
netic materials. Electrical manipulation combined with electrical  
detection of antiferromagnetic order has been recently demon-
strated2. This shows that antiferromagnets could be used to store 
information in electronic memory devices and opens new avenues 
for fundamental research of antiferromagnetic order and dynamics.

Here, we review recent theoretical and experimental progress on 
spin-transport and spin-torque phenomena allowing for reading 
and writing information stored in antiferromagnets. See Fig. 1 for 
a summary of all proposed electrical reading and writing methods. 
We also discuss other transport phenomena relevant to spintronics 
such as the generation of spin currents by antiferromagnets due to 
the spin Hall effect (SHE)3,4.

Non-relativistic spintronics effects
As discussed in Box 1, antiferromagnetic spintronics initially 
focused on antiferromagnetic analogues of ferromagnetic spin 
valves and tunnelling junctions. These devices were theoretically 
proposed to have the same functionality as their ferromagnetic 
counterparts, but were found to be strongly sensitive to disorder 
and perfect epitaxy, which prevented their experimental realization.

A more promising approach might be to consider devices that 
combine antiferromagnets with ferromagnets, where the ferromag-
net functions as a spin polarizer. Gomonay and Loktev5 showed that 
a spin-polarized current can efficiently manipulate the antiferromag-
netic order, assuming that the torque generated by the spin-polarized 
current has the same form on each sublattice as is common in fer-
romagnets, that is, Tj ~ Mj ×  (Mj ×  p) (the so-called antidamping-like 
torque). Here j is a sublattice index, Mj is the magnetic moment on 
a sublattice j, and p is the direction of the spin polarization of the 
current. This form of the torque was subsequently derived in a more 
rigorous fashion6,7. It is instructive to consider why such a torque 
is effective for manipulating antiferromagnets. The torque can be 
thought of as being generated by an effective magnetic field, such that 
Tj ~ Mj ×  Bj with Bj =  Mj ×  p. In a collinear antiferromagnet such a 
field is staggered, that is, alternating in sign between sublattices. It is a 
general principle that staggered fields can efficiently manipulate anti-
ferromagnets, whereas uniform fields (such as an external magnetic 
field) cannot. Unlike the spin-transfer torque generated by an antifer-
romagnet, the torque due to the spin-polarized current is expected to 
be much more robust against disorder. We refer to the Perspective on 

Spin transport and spin torque in antiferromagnetic 
devices
J. Železný1,3*, P. Wadley2, K. Olejník3, A. Hoffmann4 and H. Ohno5,6,7,8

Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets, which represent the more 
common form of magnetically ordered materials, have found less practical application beyond their use for establishing refer-
ence magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research 
and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of 
the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. 
Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently mul-
tilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of 
ferromagnetic and semiconductor memory technologies. Here, we review the recent progress in electronic spin-transport and 
spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum-mechanical origin. We discuss 
their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.
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FIG. 6. (a) HAADF-STEM micrograph of the interface be-
tween CuMnAs and GaP, (b) GaAs with the area selected
in green highlighting misfit dislocations (red markers) after
filtering of the Fourier spectra and (c) Si. (d) SEM micro-
graphs of 5 nm thick CuMnAs grown on GaP, GaAs and Si
(001) substrates.

XRD analysis of (105) and (002) reciprocal peaks
shows that there is a significant amount of mosaic tilt
present in CuMnAs grown on Si and GaAs, as shown in
Fig. 5(b). The peak with mosaic tilt of 0.07� sits shifted
by 0.04% with respect to the position predicted from the
reference (204) peak of the GaP substrate. The situation
is similar for Si substrates with a shift of 0.10% and a mo-
saic tilt of 0.5�. As expected from the higher theoretical
mismatch on GaAs, the peak is shifted by 4.59% with a
mosaic tilt of 1.0�. The corresponding lattice constants a
extracted from the asymmetrical peaks of the optimized
samples are 3.853 Å for GaP, 3.822 Å for GaAs and

3.844 Å for Si. The mosaic tilt was converted into the
lateral mosaic block size by an analytical model which
is briefly described in the Supplementary information [9]
and was adapted from Ref. [15]. The block size is the
largest for CuMnAs on GaP, where it exceeds 400 nm.
For GaAs we extract a smaller block size of ⇠ 40 nm,
as can also be expected due to the larger mismatch. Re-
markably, the extracted block size for growth on Si is
only ⇠ 30 nm, despite the low mismatch. This is be-
cause when CuMnAs is grown on As or P rich surface,
it can coherently compensate 1/2 of a lattice step on the
substrate; 1/4 steps are not probable due to the group V
surface termination. This is different for Si, where 1/4
steps can be present. These steps can not be coherently
compensated and likely lead to the formation of defects
which then correlates with the increased mosaicity. In
addition, the non-polar surface of the Si substrate allows
for a 90� rotation of the initial CuMnAs nuclei, which re-
sults in a formation of incoherent grain boundaries within
the crystal.

The CuMnAs/substrate interface was further investi-
gated by TEM as shown in Fig.6. In the case of GaP,
the interface is pristine and the only disturbances are
the micro-twins and slip-dislocations described above.
This is different at the CuMnAs/GaAs interface which
is disturbed by arrays of misfit dislocations with a
slightly varying periodicity, as can be expected due to the
large substrate/film mismatch. An example is shown in

FIG. 7. (a) Evolution of sheet conductivity �sqr in time for
50 nm thick CuMnAs with Al cap (red) and without cap-
ping (green) grown on GaP substrate. (b) Dependency of
�sqr on the thickness of CuMnAs layer. (c) Dependency of
the resistivity ⇢ on growth temperature for 50 nm thick films
grown on GaP, GaAs and Si substrates. (d) Ratio of resistiv-
ities measured along the <100> and <010> directions of the
CuMnAs layers with varying thickness grown on GaP, GaAs
and Si substrates. The dashed lines are guides for the eye.

substrate

CuMnAs



𝜎!! 𝜎!" 𝜎!#
𝜎"! 𝜎"" 𝜎"#
𝜎#! 𝜎#" 𝜎##

𝜎!!$ 𝜎!"$ 𝜎!#$

𝜎!"$ 𝜎""$ 𝜎"#$

𝜎!#$ 𝜎"#$ 𝜎##$

0 𝜎!"% 𝜎!#%

−𝜎!"% 0 𝜎"#%

−𝜎!#% −𝜎"#% 0
+=

𝚥 = 𝜎 𝐸

Anisotropic magnetoresistance Spontaneous Hall effect

𝜎&' 𝑠 = 𝜎'& −𝑠
Onsager relations:

𝑇𝜎$ 𝑠 = 𝜎$ −𝑠 = 𝜎$ 𝑠
Even under time (spin)-reversal Odd under time (spin)-reversal

𝑇𝜎% 𝑠 = 𝜎% −𝑠 = −𝜎% 𝑠

Readout: antiferromagnetic spintronics

𝑃𝑇

CuMnAs

𝑇

𝑃𝑇



1µm

LETTERSNATURE NANOTECHNOLOGY

suggests that the pinning of domain walls plays an important role, 
for example because of local defects and strains. The underlying 
pinning mechanisms may differ considerably from those in ferro-
magnetic domain walls; for example, stray-field effects are much 
weaker, while magnetoelastic and strain effects may be much more 
important. Both strain and the magnetoelastic constant should be 
readily influenced by varying the substrate lattice parameters and/
or chemical composition. Elucidation of these mechanisms will aid 
in designing ultrafast, high-efficiency spintronics devices based on 
antiferromagnetic domain-wall movement.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41565-018-0079-1.
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Fig. 4 | Electrical detection of current-induced switching. a, Optical micrograph of the CuMnAs device, consisting of 8 arms of width 10!μ m, and 
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Thermoelectric anomalous Nernst effect

Note 6, Supplementary Fig. 4) corresponding to a reorientation of
domains with the weakest coercivity. In contrast, increasing the
sample temperature to 400 K and then applying a magnetic field
allows us to completely alter the domain pattern, as shown in
Fig. 2c, d. At 400 K, the majority of domains is following the
external magnetic field. A magnetic field of −0.5 T yields a
positive STGM map (red color) across the entire region scanned
with the laser spot (Fig. 2c), while for +0.5 T, the STGM map
turns negative (blue color) (Fig. 2d). This shows that at 400 K,
which is close to the Néel temperature TN ¼ 420K , a magnetic
field of 0.5 T suffices to align the g vector along the field direction
in the entire sample. At the same time the net magnetic moment
detected by SQUID magnetometry (see Supplementary Fig. 2)
remains unchanged between 300 K and 400 K, such that
ferromagnet-like phases appearing at higher temperatures can be
excluded. To further study the impact of the magnetic field on the
magnetic domain pattern, we recorded STGM maps for several
different magnetic field values in a field sweep. As detailed in the
Supplementary Note 7, a complex reversal behavior with multiple

domains is observed (for individual maps at each magnetic field
see Supplementary Fig. 5). In Fig. 2e, we plot the voltage hVANEi
averaged over the whole scanned area as a function of the field
strength, and find a global magnetic hysteresis curve with a clear
saturation, coercivity and remanence. Since we observe a sign
reversal in hVANEi as a function of the magnetic field, the signal is
odd under spin reversal and, therefore, the main contribution has
the Nernst symmetry. The magneto-thermo-voltage clearly can-
not be explained by an ordinary Nernst effect, which is linear in
magnetic field and does not show hysteresis. Instead, the observed
VANE must be connected to the magnetic order parameter of the
antiferromagnet. Moreover, when applying the magnetic field
parallel to the voltage detection direction, hVANEi shows no
remanence or saturation at 400 K (Supplementary Note 4, Sup-
plementary Fig. 3). This supports the notion that the component
of g perpendicular to the voltage detection determines VANE.

An additional confirmation that the spatial contrast of STGM
maps is governed by the antiferromagnetic order in Mn3Sn is
evident from the evolution of the STGM signal with temperature.
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Nakatsuji, Kiyohara, Higo, Nature ’15
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Higo et al. Nature Phot. ‘18
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Readout: antiferromagnetic spintronics

Theory: Smejkal, TJ et al., arXiv ‚‘19, Science Adv. In press
Experiment: Feng, TJ et al., arXiv ‘20 

(Weyl) collinear antiferromagnets

RuO2

Antiferromagnetic splitting
with no SO & no M

cf. SO splitting cf. FM splitting

Spontaneous Hall effect

Optical/X-ray magnetic circular dichroism

Thermoelectric anomalous Nernst effect

broken 𝑃𝑇

𝜌H/𝜌 ~ 1%

Hayami et al., J. Phys. Soc. Jap ‘19
Yuan et al., arXiv ‘19 

Remark:
~10% of magnets from MAGNDATA 
are collinear AFs with spontaneous Hall 



Louis Néel 1970 Nobel Prize lecture:

“Antiferromagnets are interesting and useless”

cf. ferromagnetic hard-drive

Writing: magneto-recording



~

HDD, Flash-SSD

MRAM

CPU 
SRAM

R R

1998 Spin transfer torque writing
2016 ~ 1 Gb STT-MRAM

Writing: cf. ferromagnetic spintronics

Review: Ralph and Stiles, JMMM ‘08

Reversible by 
current-polarity



~

2004 Spin Hall effect

~

Review: Sinova, TJ et al., RMP ’15                    

- Relativistic spin-orbit coupling
- Inversion asymmetry
- Spin polarization flips for opposite currents

Writing: cf. ferromagnetic spintronics



2004 Spin Hall effect
2011 Spin orbit torque
2016 Experimental chip (SPINTEC)
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Review: Manchon, TJ et al., RMP ‘19 

HDD, Flash-SSD
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CPU 
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Review: Sinova, TJ et al., RMP ’15                    

Reversible by 
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Writing: cf. ferromagnetic spintronics
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Reviews: Manchon, TJ et al., RMP ’19; Zelezny et al., Nature Phys. ‘18 

cf. ferromagnetic spin-orbit torque

Global inversion asymmetry Local inversion asymmetry

CuMnAs

Writing: antiferromagnetic spintronics

𝑃𝑇

Mn2Au

𝑃𝑇

Antiferromagnetic spin-orbit torque

Zelezny, TJ et al., PRL ’14
Wadley, TJ et al., Science ’16
Bodnar, TJ et al., Nature Commun. ’18
Meinert et al. Phys. Rev. Appl. ’18, 
Zhou et al. Phys. Rev. Appl. ’18 

Again focus here on simple AF films

cf. Other works on multilayers:

- NM/(insulating)AF bilayers

- FM/AF bilayers

Overview: Zink, Physics ‘19 

Fukami et al, Nature Mater. ‘16



Mn-edge XMLD-PEEM

1µm

Wadley, TJ et al., Nature Nanotech. ‘18

Local inversion asymmetry

𝑃𝑇

LETTERSNATURE NANOTECHNOLOGY

suggests that the pinning of domain walls plays an important role, 
for example because of local defects and strains. The underlying 
pinning mechanisms may differ considerably from those in ferro-
magnetic domain walls; for example, stray-field effects are much 
weaker, while magnetoelastic and strain effects may be much more 
important. Both strain and the magnetoelastic constant should be 
readily influenced by varying the substrate lattice parameters and/
or chemical composition. Elucidation of these mechanisms will aid 
in designing ultrafast, high-efficiency spintronics devices based on 
antiferromagnetic domain-wall movement.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41565-018-0079-1.
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cf. Ferrimagnets: fs-optical switching by spin transfer between different sublattices

nFe / nGd ≈ 2.5
μGd / μFe ≈ 4
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Weaknesses inherited from the adapted ferromagnetic spintronics principles

- Low resistivity readout signals in simple magnetic films

- No extension of the current-induced spin-torque to ultra-fast optical switching

Reorientation-switching of antiferromagnets 6

FIG. 6. (a) HAADF-STEM micrograph of the interface be-
tween CuMnAs and GaP, (b) GaAs with the area selected
in green highlighting misfit dislocations (red markers) after
filtering of the Fourier spectra and (c) Si. (d) SEM micro-
graphs of 5 nm thick CuMnAs grown on GaP, GaAs and Si
(001) substrates.

XRD analysis of (105) and (002) reciprocal peaks
shows that there is a significant amount of mosaic tilt
present in CuMnAs grown on Si and GaAs, as shown in
Fig. 5(b). The peak with mosaic tilt of 0.07� sits shifted
by 0.04% with respect to the position predicted from the
reference (204) peak of the GaP substrate. The situation
is similar for Si substrates with a shift of 0.10% and a mo-
saic tilt of 0.5�. As expected from the higher theoretical
mismatch on GaAs, the peak is shifted by 4.59% with a
mosaic tilt of 1.0�. The corresponding lattice constants a
extracted from the asymmetrical peaks of the optimized
samples are 3.853 Å for GaP, 3.822 Å for GaAs and

3.844 Å for Si. The mosaic tilt was converted into the
lateral mosaic block size by an analytical model which
is briefly described in the Supplementary information [9]
and was adapted from Ref. [15]. The block size is the
largest for CuMnAs on GaP, where it exceeds 400 nm.
For GaAs we extract a smaller block size of ⇠ 40 nm,
as can also be expected due to the larger mismatch. Re-
markably, the extracted block size for growth on Si is
only ⇠ 30 nm, despite the low mismatch. This is be-
cause when CuMnAs is grown on As or P rich surface,
it can coherently compensate 1/2 of a lattice step on the
substrate; 1/4 steps are not probable due to the group V
surface termination. This is different for Si, where 1/4
steps can be present. These steps can not be coherently
compensated and likely lead to the formation of defects
which then correlates with the increased mosaicity. In
addition, the non-polar surface of the Si substrate allows
for a 90� rotation of the initial CuMnAs nuclei, which re-
sults in a formation of incoherent grain boundaries within
the crystal.

The CuMnAs/substrate interface was further investi-
gated by TEM as shown in Fig.6. In the case of GaP,
the interface is pristine and the only disturbances are
the micro-twins and slip-dislocations described above.
This is different at the CuMnAs/GaAs interface which
is disturbed by arrays of misfit dislocations with a
slightly varying periodicity, as can be expected due to the
large substrate/film mismatch. An example is shown in

FIG. 7. (a) Evolution of sheet conductivity �sqr in time for
50 nm thick CuMnAs with Al cap (red) and without cap-
ping (green) grown on GaP substrate. (b) Dependency of
�sqr on the thickness of CuMnAs layer. (c) Dependency of
the resistivity ⇢ on growth temperature for 50 nm thick films
grown on GaP, GaAs and Si substrates. (d) Ratio of resistiv-
ities measured along the <100> and <010> directions of the
CuMnAs layers with varying thickness grown on GaP, GaAs
and Si substrates. The dashed lines are guides for the eye.

substrate
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FIG. 1. Scanning NV magnetometry on CuMnAs. a, Unit cell of CuMnAs. The magnetic

moments of the Mn2+ ions (green arrows) are oriented in plane and alternate along the [001]

direction (the c-axis). b, Schematic of the scanning NV magnetometer. A diamond tip (blue)

containing an NV centre (red arrow) is scanned over an antiferromagnetic film (thickness t =

30� 50 nm). Antiferromagnetic domains are represented by black and white areas with co-planar

spins. The scanning NVmagnetometer records the antiferromagnet’s magnetic stray fieldBNV(x, y)

at a distance z = 50 � 100 nm above the surface (red/blue pattern). The inset defines the (✓,�)

vector orientation of the NV centre. c, Example of a magnetic stray field map of a pristine 30-

nm-thick CuMnAs film. NV centre parameters are (z = 60 ± 7 nm, � = 270� ± 5�, ✓ = 55�). d,

Domain pattern reconstructed from the field map in panel c, as described in the text. Scale bar,

800 nm.
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Kaspar, TJ et al., arXiv ’19, Nature Electron. in press

j ≈ 1×107Acm-2 @ 𝜏"~ms − µsj ≈ 5×106Acm-2 @ 𝜏"~ms − µs

Wornle, TJ et al., arXiv ’19

Janda, TJ et al., arXiv ‘20
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Fig. 1.3: A postsynaptic neuron i receives input from two presynaptic neurons
j = 1, 2. A. Each presynaptic spike evokes an excitatory postsynaptic potential
(EPSP) that can be measured with an electrode as a potential difference ui(t) −
urest. The time course of the EPSP caused by the spike of neuron j = 1 is
εi1(t − t(f)

1 ). B. An input spike from a second presynaptic neuron j = 2 that
arrives shortly after the spike from neuron j = 1, causes a second postsynaptic
potential that adds to the first one. C. If ui(t) reaches the threshold ϑ, an action
potential is triggered. As a consequence, the membrane potential starts a large
positive pulse-like excursion (arrow). On the voltage scale of the graph, the peak
of the pulse is out of bounds. After the pulse the voltage returns to a value below
the resting potential.
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1 ). B. An input spike from a second presynaptic neuron j = 2 that
arrives shortly after the spike from neuron j = 1, causes a second postsynaptic
potential that adds to the first one. C. If ui(t) reaches the threshold ϑ, an action
potential is triggered. As a consequence, the membrane potential starts a large
positive pulse-like excursion (arrow). On the voltage scale of the graph, the peak
of the pulse is out of bounds. After the pulse the voltage returns to a value below
the resting potential.
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Quench-switching of antiferromagnets

Kaspar, TJ et al., arXiv ’19, Nature Electron. in press
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Experimental lab set-up for 
antiferromagnetic devices

Packed into development 
analog Printed Circuit Board

Development boards with antiferromagnetic devices

Thanks to public & private funding

Illustrative example:
Sensors sending pulses to analog PCB 
with antiferromagnetic device
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Illustrative example:
Development boards with antiferromagnetic devices


