Terahertz spin transport in magnetic nanostructures

Tobias Kampfrath Freie Universität Berlin and Fritz-Haber-Institut/MPG

Acknowledgments

FUB/FHI THz group, for these results:

Reza Rouzegar Oliver Gückstock Lukáš Nádvorník Tom Seifert Martin Wolf

Samridh Jaiswal Gerhard Jakob Martin Jourdan Mathias Kläui

Marco Battiato Pablo Maldonado Peter Oppeneer UPPSALA UNIVERSITET ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD

Ulrike Martens Markus Münzenberg

David Reiß Piet Brouwer

MARTIN-LUTHER UNIVERSITÄT

HALLE-WITTENBERG

Liane Brandt Georg Woltersdorf

TECHNISCHE UNIVERSITÄT DRESDEN

Richard Schlitz S. Goennenwein

Spintronics: 3 basic operations

Spintronics: 3 basic operations

Turn spins around
Transport spins
Detect spin dynamics

 \rightarrow Torque

 \rightarrow Spin current

- **Goal:** Reach speed of other information carriers: $1 \text{ THz} = 10^{12} \text{ Hz}$
- Idea: Use THz electromagnetic pulses

Why THz spin transport?

1) Test the speed of spintronic effects, reveal initial steps

E.g. spin-Hall, spin-Seebeck and GMR

2) New physics, new methods As THz coincides with many fundamental modes

3) Reward for THz photonics

E.g. THz sources and modulators for spectroscopy and imaging

Stantchev et al., Science Adv. (2016)

How to drive spin transport?

Important drivers of spin transport

- Electric fields: E.g. spin Hall effect
- Heat: Spin-caloric effects

How to transfer to the THz range?

Heat-driven: The Seebeck effect

Thomas Seebeck (1821):

A temperature gradient drives an electron current

Uchida and Saitoh (2008):

In ferromagnets, the Seebeck current is spin-dependent

gradient

Spin-dependent Seebeck effect (SDSE)

 \uparrow and \downarrow electrons have very different transport properties

Uchida, Saitoh *et al.*, Nature (2008) Bauer, Saitoh, Wees, Nature Mat. (2013)

Spin-dependent Seebeck effect (SDSE)

 \uparrow and \downarrow electrons have very different transport properties

Uchida, Saitoh *et al.*, Nature (2008) Bauer, Saitoh, Wees, Nature Mat. (2013)

 \Rightarrow Spin-polarized current

Detection with the inverse spin Hall effect

Inverse spin Hall effect (ISHE)

Spin-orbit coupling deflects electrons

- \Rightarrow Transverse charge current
- ⇒ Spin-to-charge (S2C) conversion Saitoh *et al.*, APL (2006)

How can we induce an imbalance as fast as possible?

Inverse spin Hall effect (ISHE)

Ultrafast spin transport

Malinowski *et al.*, Nature Phys. (2008) Melnikov, Bovensiepen *et al.*, PRL (2011) Rudolf *et al.*, Nat. Comm. (2012) Eschenlohr *et al.*, Nature Mat. (2013) Turgut *et al.*, PRL (2013) Schellekens *et al.*, Nat. Comm. (2014) Ganichev *et al.*, Nature (2002)

Goal:

Measure quasi-electrically

Technical challenge:

- Electric detection has cutoff at < 50 GHz
- But expect bandwidth > 10 THz

Inverse spin Hall effect (ISHE)

Emission of electromagnetic pulse (~1 THz)

Kampfrath, Battiato, Münzenberg *et al.*, Nature Nanotech. (2013)

 \Rightarrow Measure THz emission from photoexcited FM|NM bilayers

Samples:Polycrystalline films (from Kläui, Münzenberg, Woltersdorf labs)Pump pulses:From Ti:sapphire oscillator (10 fs, 800 nm, 2.5 nJ, 80 MHz)

Quick look into the lab

Simple THz emission setup in lab

Optical pump beam

Spintronic sample

Parabolic mirror

Electro-optic crystal for sampling of the THz electric field

To detection of probe ellipticity

Typical signals

Typical THz waveforms from Fe|Pt bilayers

Further findings

- Signal ∞ pump power
- THz electric field ⊥ sample magnetization

Consistent with scenario spin transfer + ISHE

Need more evidence for the spin Hall scenario

Ultrafast inverse spin Hall effect

Idea:

Vary nonmagnetic cap layer

Ta vs Ir:

Opposite spin Hall angles, Ir larger

The inverse spin Hall effect is still operative at THz frequencies

Kampfrath, Battiato, Oppeneer, Freimuth, Mokrousov, Radu, Wolf, Münzenberg *et al.*, Nature Nanotech. (2013)

Interesting applications:

- 1) Rapid material characterization regarding spin-to-charge conversion
- 2) Measurement of spin-current dynamics
- 3) Generation of THz electromagnetic pulses-

Compare to state-of-the-art emitter

Spintronic THz emitter

Spintronic THz emitter

More broadband, efficient and cheaper than standard emitters like ZnTe

Seifert, Radu, Kläui, TK et al., Nature Photon. (2016)

Yang, Wu, Qi *et al.*, Adv. Opt. Mat. (2016) Wu, Yang *et al.*, Adv. Mat. (2017) Torosyan, Beigang, Papaioannou *et al.*, Sci. Rep. (2018)

A quick look in the lab again...

Spintronic THz emitter in the lab

Movie by Oliver Gückstock and Lukáš Nádvorník

Magnetism and thin metal enable interesting features...

More features of spintronic THz emitters

Emitter is insensitive to pump wavelength

Papaioannou, Beigang *et al.*, IEEE (2018) Herapath, Seifert, TK, Hendry *et al.*, APL (2019)

Cavity pushes pump absorption from $\approx 50\%$ to $\approx 100\%$

Feng *et al.*, Adv. Opt. Mat (2018) Herapath, Seifert, TK, Hendry *et al.*, APL (2019)

Larger emitters are easy and cheap to fabricate

More features of spintronic THz emitters

Upscaling to ~5 cm diameter yields 0.3 MV/cm peak field

Seifert, Kläui, TK *et al.*, APL (2017) Fülöp, Tzortzakis, TK, Adv. Opt. Mat. (2020)

Tailor the magnetization landscape to generate structured THz beams

Hibberd, Graham et al., APL (2019)

The magnetization can also be temporally modulated

More features of spintronic THz emitters

Polarity modulation of THz field up to 20 kHz

Gückstock, Nadvornik, TK et al. (2020)

Bendable substrates

Wu, Yang et al., Adv. Mat. (2016)

Metal films can be nanostructured easily

More features by nanostructuring

Antenna-coupled spintronic emitters

Nandi, Kläui, TK, Preu et al., APL (2019)

Challenge: How to further increase the THz field strength?

Challenge: More THz amplitude

Maximize spin-to-charge-current conversion

- N should have large ISHE and large spin diffusion length
- Interface engineering

Maximize spin current for given pump energy

Understand how the spin current is induced

What does the driving THz spin current look like?

Dynamics of the spin current

Approach: "Calculate back"

THz field $\rightarrow j_{s}(t)$

Seifert, Barker, TK *et al.*, Nature Commun. (2018)

- Extremely fast bipolar response
- What is the driving force?

Transport vs demagnetization

What is the origin of the ultrafast spin transport?

Idea:

Compare to dynamics of another fundamental process

Ultrafast local magnetization quenching of single ferromagnetic layers

Beaurepaire et al., PRL (1996)

Is there a correlation with ultrafast transport in bilayers?

Need to measure both processes in one experiment

Transport vs demagnetization

Spin-to-charge current conversion \Rightarrow Electric-dipole (ED) radiation

Seifert et al., Nat. Phot. (2016)

 $E_{j_s} \propto j_s$

 $- \bigvee_{E_{\dot{M}}(t)}$

Ultrafast magnetization quenching \Rightarrow Magnetic-dipole (MD) radiation Beaurepaire *et al.*, APL (2004)

$$E_{\dot{M}} \propto \dot{M} = \partial M / \partial t$$

How to isolate the weak \dot{M} signal?

j_s vs *M*: Exploit symmetry

Flip sample about *M*

j_s vs *M*: Exploit symmetry

Ferrom.

(F)

M

Flip sample about M

- THz field due to j_s changes sign
- Has "odd" symmetry

Beaurepaire *et al.*, Ultrafast Phen. (2004) Huisman, Kimel *et al.*, PRB (2015)

Flip sample about *M*

• *M* emission does not change

28

- Has "even" symmetry
- A potential even signal is hopefully small

Sample details

Pump pulses: From Ti:sapphire oscillator (10 fs, 800 nm, 1 nJ, 80 MHz)

Start with F|N stack

THz emission from F|N stack

- \approx 100% signal reversal \Rightarrow Even symmetry
- Thus: Emission $E_{j_s}(t) \propto j_s(t)$ is dominant
- Use as reference for proper alignment

Let's go for the single F layer

THz emission from single F layer

- Signal is ~170 times smaller than from F|N
- Nontrivial signal change upon sample reversal
- Indicates both even (\dot{M}) and odd signals contribute

Separate even and odd contributions

F monolayer: Odd and even emission

Odd signal: Considerable

Origin not fully clear: Due likely to film inhomogeneities along growth direction

Even signal: We assign it to ultrafast demagnetization, $E_{\dot{M}} \propto \dot{M}$

- Signal has right polarity and order of magnitude
- Extract M(t) and check temporal dynamics

F monolayer: M(t) dynamics

The even signal from the F single layer arises from ultrafast demagnetization

Now compare: Even signal from $F \leftrightarrow Odd$ signal from F|N

Even from F vs odd from F|N

Even emission from single F layer \propto Odd emission from F|N stack

$$E_{\text{even}}^{\text{F}}(t) \propto E_{\text{odd}}^{\text{F}|\text{N}}(t)$$

What does this imply?

Transport vs demagnetization

 $E_{\rm even}^{\rm F} \propto \dot{M}^{\rm F}$

Our observations indicate: Demagnetization rate of F \propto Spin current F \rightarrow N in F|N

 $j_{\rm s}^{\rm F|N} \propto \dot{M}^{\rm F}$

Confirmed for

- N = Pt and W
- $F = Co_{70}Fe_{30}$ and $Ni_{80}Fe_{20}$

1) Ultrafast spin transport and

2) Ultrafast demagnetization are driven by same force

Interpretation: Driven by $\mu_{\uparrow}-\mu_{\downarrow}$

Acremann et al.:

Pump-induced heating of F layer causes $\mu_{\uparrow} \neq \mu_{\downarrow}$

J. Phys. Cond. Mat. (2017)

Spin-dependent Seebeck effect

Bauer, Saitoh, Wees, Nature Mat. (2013) $j_{\rm s}^{\rm F|N} \propto \mu_{\uparrow} - \mu_{\downarrow}$

Rethfeld et al.:

 $\mu_{\uparrow} - \mu_{\downarrow}$ drives spin flow from \uparrow to \downarrow channel PRB **90**, 144420 (2014)

Summary

2) Ultrafast demagnetization are driven by the same force

Significance:

- We can apply all knowledge of 2) to 1)
- Will guide us to maximize spin current from F to N
- Can use N layer as an ultrafast detector of $\mu_{\uparrow} \mu_{\downarrow}$

Summary

THz spin transport

- Enables interesting applications, e.g. THz wave generation, THz spin torque
- First temporal steps of spintronic effects

New insights

Ultrafast demagnetization and spin transport are driven by same force

Future directions

Use THz currents to apply spin torque

THz radiation is a useful tool to probe and control spin dynamics

Interested in a project in in THz spintronics?

 \rightarrow Contact Tobias Kampfrath