

Mathias Kläui	SPICE	E/Spin+X Seminar, Mainz, 19.8.2020
1. Introduction to Antiferromagnets – what is different?		
	Ferromagnets	Antiferromagnets
	Ferromagnet	Antiferomagnet
Magnetic Susceptibility	~ 10 ³ * (typical for Fe)	$\sim 10^{-2}$ ** (typical for MnF ₂)
Eigenfrequencies	GHz	THz
M ₁ M ₂ Courtesy of T. Moriyama & H. Gomona		

Mathias Kläui	SPICE/S Antiferromagnets – v Ferromagnets	Spin+X Seminar, Mainz, 19.8.2020 what is different? Antiferromagnets
	Ferromagnet	Antiferomagnet
Magnetic Susceptibility	~ 10 ³ * (typical for Fe)	~ 10^{-2} ** (typical for MnF ₂)
Eigenfrequencies	GHz	THz
Abundance	Low (mostly metallic)	High (metallic and insulating)
	Cc	purtesy of T. Moriyama & H. Gomona

Introduction to Antiferromagnets – what is different? Ferromagnets Antiferromagnets Image:	Mathias Kläui	SPI	CE/Spin+X Seminar, Mainz, 19.8.2
FerromagnetsAntiferromagnetsImage: Image: I	I. Introduction to Antiferromagnets – what is different?		
Magnetic SusceptibilityFerromagnetAntiferomagnetMagnetic Susceptibility~ 103 * (typical for Fe)~ 10-2 ** (typical for MnF2)EigenfrequenciesGHzTHzAbundanceLowHighMagnetoelastic couplingOften weakMostly strong		Ferromagnets	Antiferromagnets
Magnetic ~ 10 ³ * ~ 10 ⁻² ** Susceptibility C(typical for Fe) C(typical for MnF ₂) Eigenfrequencies GHz THz Abundance Low High Magnetoelastic coupling Often weak Mostly strong		\rightarrow	\rightarrow
Magnetic Susceptibility ~ 10 ³ * ~ 10 ⁻² ** Eigenfrequencies GHz (typical for MnF ₂) Abundance Low High Magnetoelastic coupling Often weak Mostly strong		Ferromagnet	Antiferomagnet
Eigenfrequencies GHz THz Abundance Low High Magnetoelastic coupling Often weak Mostly strong	Magnetic Susceptibility	~ 10 ³ * (typical for Fe)	~ 10^{-2} ** (typical for MnF ₂)
Abundance Low High Magnetoelastic coupling Often weak Mostly strong	Eigenfrequencies	GHz	THz
Magnetoelastic coupling Often weak Mostly strong	Abundance	Low	High
	Magnetoelastic coupling	Often weak	Mostly strong

Mathias Kläui	SF	PICE/Spin+X Seminar, Mainz, 19.8.2020
1. Introduction to Antiferromagnets – what is different?		
	Ferromagnets	Antiferromagnets
	\rightarrow	\Rightarrow
	Ferromagnet	Antiferomagnet
Magnetic Susceptibility	~ 10 ³ * (typical for Fe)	~ 10^{-2} ** (typical for MnF ₂)
Eigenfrequencies	GHz	THz
Abundance	Low	High
Magnetoelastic coupling	Often weak	Mostly strong
Exchange	Usually simple Heisenberg	Often complex

Mathias Kläui	SF	PICE/Spin+X Seminar, Mainz, 19.8.2020
1. Introduction to Antiferromagnets – what is different?		
	Ferromagnets	Antiferromagnets
	\rightarrow	\Rightarrow
	Ferromagnet	Antiferomagnet
Magnetic Susceptibility	~ 10 ³ * (typical for Fe)	~ 10^{-2} ** (typical for MnF ₂)
Eigenfrequencies	GHz	THz
Abundance	Low	High
Magnetoelastic coupling	Often weak	Mostly strong
Exchange	Usually simple Heisenberg	Often complex
Useful	Yes (easy to measure, easy to control)	Yes (passive elements ok / hard to measure, hard to control)
Antiferromagnets: definately interesting and possibly useful even as active elements!		

 2. Summary of Read-Out of Antiferromagnets: 1. Electrical read-out: Insulators: Spin Hall Magnetoresistance (SMR) Metals: Anisotropic magnetoresistance (domains) Domain Wall magnetoresistances (DWo) 	Mathias Kläui	SPICE/Spin+X Seminar, Mainz, 19.8.202	
 1. Electrical read-out: Insulators: Spin Hall Magnetoresistance (SMR) Metals: Anisotropic magnetoresistance (domains) 	2. Summary of Read-Out of Antiferromagnets:		
 2. Imaging read-out: Metals&Insulators: X-ray magnetic linear dichroism as contrast mechanism combined with x-ray microscopy (PEEM, STXM, TXM, x-ray holography,) 3. Other mechanisms: Thermal Seebeck Imaging PRX 9,041016(2019),arxiv:2004.05460 Anomalous Nernst Effect Nat. Commun.10, 5459 (2019) Imaging uncompensated moments Nature 549, 252 (2017) Second Harmonic Generation Nature Mater. 16, 803 (2017) Magneto-optical Kerr effect Phys. Rev. B 100, 134413 (2019) 	 I. Electrical read-out: Insulators: Spin Hall Magn Metals: Anisotropic mag Domain Wall ma Imaging read-out: Metals&Insulators: X-ray magnetic line mechanism combin (PEEM, STXM, TXM) Other mechanisms: Thermal Seebeck Imaging Anomalous Nernst Effect M Imaging uncompensated m Second Harmonic Genera Magneto-optical Kerr effect 	netoresistance (SMR) gnetoresistance (domains) agnetoresistances (DWs) ear dichroism as contrast ned with x-ray microscopy M, x-ray holography,) PRX 9,041016(2019),arxiv:2004.05460 Nat. Commun.10, 5459 (2019) moments Nature 549, 252 (2017) ation Nature Mater. 16, 803 (2017) of Phys. Rev. B 100, 134413 (2019)	

Mathias Kläui	PICE/Spin+X Seminar, Mainz, 19.8.2020	
4. Summary of Spin Transport in Antiferromagnets:		
 1. Diffusive vs. Superfluid spi Nature 561, 222 ('18); Phys. Rev. Lett. 119, (2018); Nature Mater. 17, 577 (2018); arxiv 2. Influence of domains and o transport in AFMs 	n transport in AFMs 187705 (2017); Sci. Adv. 4, eaat1098 :2005.14414 (2020); arxiv:2001.03117 domain walls on spin	
 Nano Lett. 20, 306 (2020) 3. Further Transport Studies: Vertical transport across Al Phys. Rev. Lett. 113, 097202 (2014); Euro Appl. Phys. Lett. 106, 162406 (2015); Phy Nat. Comm. 7, 12670 ('16); Phys. Rev. B Magnon Spin Valves (FM/A Nature Comm. 9, 1089 (2018); Phys. Rev. T Phys. Rev. Lett. 120, 097702 (2018) 	FMS phys. Lett. 108 , 57005 (2014); s. Rev. Lett. 116 , 186601 (2016); 98 , 014409 ('18), PRB 98 , 094422 ('18). AFM-I/FM) Lett. 120 , 097205 (2018);	

Mathias Kläui	SPICE/Spin+X Seminar, Mainz, 19.8.2020
Summary:	
 Reading AFMs: XMLD- and Kerr- microscopy and in insulators by sp magnetoresistance & in metals by PRB 98, 24422 (2018); PRB 99, 140409 (2019); Comm. Phys. 2, 50 (2019). PR Appl. 14, 014004 	in Hall AMR. (2020);
 Writing AFM insulators and metals current injection (e.g. SOTs) & stra Nature Com. 9, 348 (2018); PRL 123, 177201 (2 PRL 125, 077201 (2020); APL 109, 142404 (20 arxiv:2004.13374; arxiv:2008.05219 	in 2019 16);
 Spin Transport in AFM insulators: Observation of long-distance diffus & strong dependence on domain s 	ive transport tructure
→ spin transport can be tuned! an Nano Lett. 20, 306 (2020); Nature 561, 222 (2018); General reviews: Rev. Mod. Phys. 90, 15005 (2018); Na	rxiv:2005.14414 (2020) PRL 119 , 187705 (2017); ture Phys. 14 , 200, 213, 220, 229, 242 (2018);