Chiral spintromics: non collinear spin texture with application to Racetrack Memory

Stuart Parkin

Max-Planck Institute for Microstructure Physics Halle (Saale)

Martin Luther University Halle-Wittenberg

stuart.parkin@mpi-halle.mpg.de

ndriy Styer, Tianping Ma, Rana Saha, Abhay Srivastava, Ajaya Nayak, Kyryolo D. Max Pianck Institute MSP, Halle Rana Saha

> Vivek Kumar, Roshnee Sahoo, Parul Devi, Claudia Felser Max Planck Institute cpfs, Dresden

echeng

Zhuang

Börge Göbel, Ingrid Mertig Martin Luther University, Halle

See-Hun Yang, Chirag Garg IBM Research – Almaden, San Jose, California

write head read head MTJ Magnetic tunneling track media junction hard disk MTJ CMOS STT-MRAM Parkin & Yang, Nature Nanotechnology (March 2015)

Spintronics – from materials and phenomena to applications

Spintronic technologies evolution

Memory on Racetrack! 4+ stages

Yang et al. Nature Phys. (2019) Bläsing et al. Nature Commun. (2018) Garg et al. Nature Commun. (2018) Filippou et al. Nature Commun. (2018) Garg et al. Science Adv. (2017) Parkin & Yang, Nature Nano. (2015) Yang, Ryu and Parkin, Nature Nano. (2015) Ryu et al. Nature Nano. (2013) Parkin et al. Science (2008)

Chiral domain walls from Dzyaloshinskii-Moriya Interaction

(#1) Perpendicular Magnetic anisotropy (PMA)

- materials: Co/Ni, Co/Pt, Co/Pd, RE/TM multilayers, low symmetry magnetic materials - racetracks magnetized perpendicular to the plane of the racetrack

(#4) Spin Hall effect: conversion of charge to spin current

Charge to spin conversion via the Spin Hall Effect

• Spin Hall effect: dramatic evolution over past 5 years

RM 4.0: Very High DW Speeds in Synthetic Antiferromagnet (SAF) racetracks

- → SAF: Synthetic antiferromagnet: upper racetrack = exact mirror image of lower
- → DW velocity increases as degree of compensation of moments in upper and lower racetracks increased
- \rightarrow 4x highest DW velocity yet reported \rightarrow Speeds exceed 1.5- 5 km/sec
- → AF exchange field > DMI field

Yang et al. Nature Nanotechnology (2015)

Racetrack Memory 4.0

- \rightarrow 20 domain walls moved in lock step with current pulses
- \rightarrow High velocity at low current densities
- → Narrow domain walls (~6 nm)
- \rightarrow Very thin racetracks (~1 nm)

→ Giant domain wall velocities in Synthetic Antiferromagnet racetracks > 1 km/sec

Domain wall motion: complex interplay of 4 spin-orbit derived phenomena

- 1. Perpendicular magnetic anisotropy
- 2. Proximity induced magnetization
- 3. Chiral domain walls DMI
- 4. Spin currents from spin Hall effect (SHE)

Ryu et al. Nature Nanotechnology (2013) Yang et al. Nature Nanotechnology (2015) Parkin et al. Nature Nanotechnology (2015) Garg et al. Sci. Adv. (2017); Nat. Comm. (2018) Yang et al. Nat. Phys. (2019)

Heusler Family of compounds

Skyrmions and anti-skyrmions

Nayak et al. Nature (2017)

Stabilization of anti-skyrmion lattice in wedge-shaped lamella of Mn_{1.4}Pt_{0.9}Pd_{0.1}Sn

Magnetic phase diagram of wedge-shaped lamella of single crystalline $Mn_{1.4}Pt_{0.9}Pd_{0.1}Sn$ after field-cooling (FC) process with 0.2 T applied at 365 K.

Magnetic phase diagram of skyrmions: FeGe (B20, chiral)

Sk density (um

75

→ Anti-skyrmions are stable over wide range of temperature and magnetic fields as compared to skyrmions

 Skyrmions are more stable at lower thicknesses

X. Z. Yu , Y. Tokura *et al*., Nat. Mater. 10, 106, (2011)

Thickness and field dependent phase diagram of B20 and D2d structures

$$H_{B20} = -J \sum_{r} \vec{S}_r \cdot \left(\vec{S}_{r+a\hat{x}} + \vec{S}_{r+a\hat{y}} + \vec{S}_{r+a\hat{z}}\right) - \vec{H} \cdot \sum_{r} \vec{S}_r$$
$$-D_{B20} \sum_{r} \left(\vec{S}_r \times \vec{S}_{r+a\hat{x}} \cdot \hat{x} + \vec{S}_r \times \vec{S}_{r+a\hat{y}} \cdot \hat{y} + \vec{S}_r \times \vec{S}_{r+a\hat{z}} \cdot \hat{z}\right)$$

Magnetization modulated along thickness, due to z component of DMI.

→ Twisted Skyrmion tube preferred.

B20

D2d

DMI vector

→Skyrmions not stable when thickness is too large (twist from surface to center larger than $\pi/2$).

$$H_{D2d} = -J \sum_{r} \vec{S}_{r} \cdot \left(\vec{S}_{r+a\hat{x}} + \vec{S}_{r+a\hat{y}} + \vec{S}_{r+a\hat{z}}\right) - \vec{H} \cdot \sum_{r} \vec{S}_{r}$$
$$-D_{D2d} \sum_{r} \left(-\vec{S}_{r} \times \vec{S}_{r+a\hat{x}} \cdot \hat{x} + \vec{S}_{r} \times \vec{S}_{r+a\hat{y}} \cdot \hat{y}\right)$$

Magnetization unchanged along thickness, due to Heisenberg exchange.

→ Untwisted Anti-Skymion tube preferred.

 \rightarrow Anti-Skyrmion remain stable to large thicknesses.

Thickness dependence of helical periodicity in wedge-shaped lamella $(Mn_{1.4}Pt_{0.9}Pd_{0.1}Sn)$

Helical periodicity increases with thickness

Variable temperature magnetic force microscopy imaging of helical phase

Variable temperature MFM: helical wavelength vs thickness up to 4 microns

Magnetic force microscopy (MFM) image of helical magnetic phase in a wedge-shaped lamella of single crystalline Mn_{1.4}PtSn at 300 K in zero magnetic fields and Helical wavelength vs. thickness of the lamella crystal.

Variable temperature MFM: aSk size vs thickness up to 4 microns

Magnetic force microscopy (MFM) image of magnetic field dependence of Antiskyrmion

Antiskyrmion size vs. thickness 300 K

- Thickness of the lamella increases from left end to right. The size of the images are $8 \times 16 \ \mu m$.

- Maximum size of the antiskyrmion is found to be 1.16 $\mu m.$

Anti-skyrmion \rightarrow elliptical skyrmion due to dipole-dipole interaction

→ Metastable elliptical Bloch skyrmions can be stabilized in same material

PtMnGa: crystal structure (buckled layered)

Crystal structure:

trigonal (P3m1, space group no. 156)

Lattice Parameters:

a=b= 4.35Å, c= 5.59Å

α=β =90°, Y= 120°

 \rightarrow Isostructural to hourglass Fermion material KHgSb

HKL	Fobs(HKL) ²	F _{calc} (HKL) ²
0 0 1	196.59	180.80
0 1 1	6840.50	5999.50
0 2 1	2750.74	2577.01
-1 1 0	2646.92	2518.25
-1 1 1	3647.66	4349.99
-1 1 2	16313.61	11653.70
-1 2 0	29582.05	28119.56
-1 2 1	124.15	85.47
0 0 3	518.51	654.83
-1 3 0	649.65	614.80
-2 2 1	2081.43	3479.31
-2 2 2	3779.58	2752.53
0 2 2	4448.76	5720.66
-1 2 2	6201.97	8002.20
-2 2 0	1419.61	1180.43
-2 3 1	2616.53	1623.58
-1 2 4	2441.26	2914.10

Bold letters indicate observed reflections, which are forbidden in space group P6₃/mmc

PtMnGa: Lorentz TEM observation of Néel skyrmions

Stable Skyrmions for thicker layers observed using MFM

SEM side view image of the wedgeshaped lamella

Skyrmion size vs thickness

Robustness against in-plane magnetic field

MFM images of metastable Néel skyrmions in a uniform lamella of thickness 1 µm

Conventional versus ionic liquid gating

Metal-Insulator-Semiconductor (MIS) FET structure

- Insulating layer ≈ 100 nm
- Capacitance $\approx 10 50 \text{ nF cm}^{-2}$
- Charge carrier density $\approx 10^{13}$ cm⁻²
- High gate voltages necessary

June 28, 2020

Electrochemical Double Layer (EDL) FET structure

- EDL ≈ 1 nm
- Capacitance ≈ 1 µF cm⁻²
- Charge carrier density ≈ 10¹⁵ cm⁻²
- Gate voltage <3V

Ionic Liquid Gate induced Suppression of MIT

- MIT is suppressed down to 10K with the application of gate voltage.
- No signature of residual MIT
 - \rightarrow The entire film is metallized.

Science (2013), PNAS (2015, 2016), Nano Lett. (2013, 2016), Adv. Mater. (2016, 2017) Phys. Rev. Lett, (2016, 2017), Nano Lett. (2017), DRC (2018), Nat. Commun. (2018)

Brownmillerite – perovskite: SrCoO_{2.5} – SrCoO₃

Ionic Liquid

Positive and negative gate voltages applied through ionic liquid will extract oxygen from and inject oxygen into SCO, respectively, resulting in the brownmillerite SrCoO_{2.5} and perovskite SrCoO₃.

In-situ TEM: Brownmillerite \rightarrow perovskite: SrCoO_{2.5} – SrCoO₃

Time-dependent phase transition between $SrCoO_{2.5}$ and $SrCoO_3$ with ionic liquid gating. Ionic liquid on the left side.

In-situ TEM: Pervoskite \rightarrow Brownmillerite : SrCoO₃ – SrCoO_{2.5}

Top HRTEM, bottom FFT; yellow dashed line: rough phase boundary

IL gating controlled meso-structures

IL gated patterned oxide film \rightarrow 3D meso-structures

≻VO₂Strictly limited in the resisthole: [001] O transport channel

≻La_{0.45}Sr_{0.55}MnO₃ Emanative pattern beyond the hole: multidirectional O transport

SrCoO₂.5

A more conductive ring around the hole: multidirectional O transport & perovskite/brownmilleriate interface

Multi-state phase transitions

Beyond two states phase change

SrCoO₃ could be reversibly changed to SrCoO_{2.5} with superstructure vertical and parallel to the surface using small and large gate voltages, respectively

Creation of magnetic meso-structures

• Nanoscale gridding (~100nm) made by patterned ionic liquid gating

Chiral spintronics: Chiral and spatial spin textures

Anti-skyrmions

- Observed in several tetragonal inverse Heuslers
- Anti-skrymion size & helical wavelength increase with thickness
- "elliptical" twinned skyrmions found in same system

Important technological applications – Racetrack Memory

- DW velocities > 1,000 m/sec in synthetic antiferromagnets
- 3T Single DW Racetrack replacement for SRAM
- Promises 3T device with SRAM performance but increased density, *MLU, Halle* much lower energy consumption & non-volatility (fast start-up)

Artificial spin textures

 Using ionic liquid gate induced FM and AFM (2x) phases can create wide varierty of spatial spin textures – racetrack, spin liquid...

Tianping Ma, Rana Saha, Abhay Srivastava, Ajaya Nayak, Peter Werner, Robin Blasing, Kai-Uwe Demasius, MPI-Halle

Vivek Kumar, Roshnee Sahoo, Parul Devi, Claudia Felser MPI-cpfs

Börge Göbel, Ingrid Mertig MLU, Halle

See-Hun Yang, Chirag Garg, IBM Research - Almaden

Nayak *et al.* Nature (2017) Yang *et al.* Nat. Phys. (2019) Sana *et al.* Nat Comm. (2019) Srivastava *et al.* Adv. Mater. (2019)

Innately 3D memory and logic devices

Today: 2D Future: innately 3D

Racetrack Memory

10 to 100 times the storage capacity of conventional solid state memory → Could displace flash memory and hard disk drives

Cognitive Devices emulating synaptic functions in a solid state device → Million times more energy efficient than charge based computers