Amir Yacoby, Harvard University

GORDON AND BETTY

N

D

F

0

Ground state properties Conductance channel with up-spin charge carriers **Challenges:** Materials with unique spin and magnetic properties • nm Length scales and mesoscopic sizes Conductance channel with Canted antiferromagnetic states in graphene Quantum down-spin well charge carriers From SC Zhang Novel insulating states: Circulating currents in twisted bilayer graphene l µm

Spin Momentum Locking: Quantum Spin Hall Effect

Novel excitation

Challenges:

- How to probe dispersion
- Density of states
- Quantum statistics

Topological Superconductors

Spin liquids

Balents – Nature review

Transport of novel excitations

Challenges:

 How to detect spin chemical potential and current

Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid

Y. Kasahara¹, T. Ohnishi¹, Y. Mizukami², O. Tanaka², Sixiao Ma¹, K. Sugii³, N. Kurita⁴, H. Tanaka⁴, J. Nasu⁴, Y. Motome⁵, T. Shibauchi² & Y. Matsuda¹*

Quantized thermal Hall effect

PRL 112, 227201 (2014)

Transport of novel excitations

Challenges:

How to detect spin chemical potential and current

Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid

Y. Kasahara¹, T. Ohnishi¹, Y. Mizukami², O. Tanaka², Sixiao Ma¹, K. Sugii³, N. Kurita⁴, H. Tanaka⁴, J. Nasu⁴, Y. Motome⁵, T. Shibauchi² & Y. Matsuda¹⁴

Quantized thermal Hall effect

Need alternatives to electrical measurements

Quantum Hall Systems: Collective Excitations

Skyrmions: charge e

Composite Fermions: charge e

Anyons – Fractional charge

Non Abelian Statistics

Non-Abelions: Charge e/4

SPIN AND ISOSPIN: EXOTIC Order in Quantum Hall Ferromagnets

Steven M. Girvin

JUNE 2000 PHYSICS TODAY 39

temperature of a few K, characteristic of the Zeeman gap and the spin stiffness.

At filling factor v = 1, spin waves are the lowest energy excitations. But because they do not carry charge, they do not have a large impact on the electrical transport properties. Since the lowest spin state of the lowest Landau level is completely filled at v = 1, the Pauli exclusion principle tells us that we can add more charge, as illustrated in figure 1, only with reversed spin. In the absence of strong Coulomb interactions, the energy cost of this spin flip is simply the Zeeman energy, which is very small. So one might not expect to see a quantized Hall plateau near v = 1, because there would be a high density of thermally excited charges. However, the Coulomb interaction exacts a large exchange-energy penalty for having a reversed spin in a ferromagnetic state.^{2,7} Thus magnetic order induced by Coulomb interactions turns out to be essential to the integer quantum Hall effect.

Extremely low Magnetization

Quantum Hall Ferromagnets

 $|\downarrow
angle$

Magnetic field

Quantum Hall Ferromagnets

Magnetic field

Quantum Hall Ferromagnets

 $\ket{\downarrow}$

Magnetic field

Magnons

Spin wave

Gapped spin excitations below Zeeman energy

Gapped spin excitations below Zeeman energy

Spontaneous breaking of U(1) symmetry Gapless spin excitations

M. Kharitonov, Phase diagram for the v=0 quantum Hall state in monolayer graphene. *Phys. Rev. B.* **85**, 155439 (2012).

D. Wei. T. van der Sar, B. I. Halperin, AY et al, **Science** (2018) See also P. Stepanov et al, Nat. Phys. 2018

Gapped spin excitations below Zeeman energy

Spontaneous breaking of U(1) symmetry Gapless spin excitations

- Electrically Tunable Magnetic Order
- Weak spin orbit interaction long lived spin excitations

PRL 112, 227201 (2014)

Transport of novel excitations

Superfluid Spin Transport Through Easy-Plane Ferromagnetic Insulators

PHYSICAL REVIEW LETTERS

So Takei and Yaroslav Tserkovnyak

Wiedemann-Franz law for magnon transport

Kouki Nakata,¹ Pascal Simon,² and Daniel Loss¹ ¹Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland ²Laboratoire de Physique des Solides, CNRS UMR-8502, Université Paris Sud, 91405 Orsay Cedex, France (Dated: November 4, 2015)

Magnetization Transport and Quantized Spin Conductance

Florian Meier and Daniel Loss

week ending

6 JUNE 2014

Universal Peltier and Seebeck coefficieAnts

Challenges:

 How to generate and detect spin transport in quantum Hall ferromagnets?

Magnons:

- Collective spin excitations
- Gapped at finite field
- In QH systems, gap energy equals BARE Zeeman energy

Below the magnon gap

D. Wei. T. van der Sar, B. I. Halperin, AY et al, Science (2018)

Non Local Experiments

D. Wei. T. van der Sar, B. I. Halperin, AY et al, Science (2018)

-6

D. Wei. T. van der Sar, B. I. Halperin, AY et al, Science (2018)

0

0.5

-0.5

 $V_{T_{52}}(V)$

-1

Scattering Platforms

• Can we perform a scattering experiment with magnons?

Magnon Scattering Platform

Magnon Scattering Platform

- 1) Launch coherent waves with well defined energy and momentum
- 2) Detect scattered waves, ideally, both amplitude and phase
- 3) Appreciable interaction of magnons with the target material
- 4) Reliable extraction of target material properties

What makes NV-spins in diamond well-suited?

works over a broad temperature range

- Atom-sized sensor

Spin energy levels $m_s = +1$ Energy 3 GHz $m_s = -1$ $m_s = 0$ Magnetic field

- Sensitive to magnetic & electric fields, and temperature

Fabricating Tips

P. Maletinsky, AY et. al. Nature Nano (2012)

Imaging Propagating Magnons

• NV centers are phase sensitive sensors.

- Frequency set by drive
- Wavelength set by dispersion
- Phase determined from
 interference

Position dependent phase

 $Be^{i\omega t+ikx}$

Imaging Propagating Magnons

• NV centers are phase sensitive sensors.

- Frequency set by drive
- Wavelength set by dispersion
- Phase determined from interference

Position dependent phase

 $Be^{i\omega t+ikx}$

See also experiments using BLS

Magnon Dispersion

• NV centers are phase sensitive sensors.

- Frequency set by drive
- Wavelength set by dispersion
- Phase determined from
 interference

 $Be^{i\omega t+ikx}$

Scattered Amplitude Map

• NV centers are phase sensitive sensors.

- Frequency set by drive
- Wavelength set by dispersion
- Phase determined from interference

Scattered Phase Map

• NV centers are phase sensitive sensors.

Excite Both strip line and Antenna

- Frequency set by drive
- Wavelength set by dispersion
- Phase determined from
 interference

Model and Reconstruction

Looking for the time dependent component

$$\mathbf{H} = H_0 \hat{\mathbf{y}} + \mathbf{h} e^{-i\omega t}, \quad \mathbf{M} = M_S \hat{\mathbf{y}} + \mathbf{m} e^{-i\omega t}$$

Magnetostatics Maxwell's equations – Valid when $\lambda_{vacuum} \gg \lambda_{medium}$

 $\nabla \times \mathbf{h} = 0, \quad \nabla \cdot (\mathbf{h} + 4\pi\mathbf{m}) = 0$ $\mathbf{m} = \mathbf{m}_0 + \delta \overline{\mathbf{m}_{target}}$ $\mathbf{h} = -\nabla \psi$ $\nabla^2 \psi = 4\pi \nabla \cdot \delta \mathbf{m}_{target}$ Example: Magnetized Disc $\delta \mathbf{m}_{target}$ $\nabla \cdot \delta \mathbf{m}_{target}$ m

Model and Reconstruction

в

PL (a.u) 134

143

Toeno van

Daniel Fernandez

Andrew Pierce

Lee

Seung Hwan Yonglong Xie

Lisa

Joris

Bert Halperin

Ilya Esterlis

Dries Sels

<u>|</u> Ű)i FM CAF FM

