

Non-stationary quantum manybody dynamics

Berislav Buca | Clarendon Laboratory, University of Oxford | 5 May 2021

- **Introduction**
- Motivation
- Definition of non-stationarity (complex long-time dynamics)
- **Contrast: Equilibration to stationarity (statistical mechanics)**
- **Dynamical symmetries**
- Closed quantum many-body systems
- Open quantum many-body systems
- **Examples of non-stationary closed quantum many-body systems**
- Heisenberg XXZ spin chain
- Spin lace (~magnetic azurite) (works both as an open example)
- **Examples of non-stationary open quantum many-body systems**
- Dephased spin-1/2 fermions in an optical lattice
- Spinor BECs in an optical cavity
- **Conclusion**

What is non-stationarity?

A simple harmonic oscillator

- •We will focus on (physically measurable) **local** quantities (e.g. particle number, heat, charge, position of a particle, magnetization, …)
- Explicit long-time time-dependence of measurable quantities $\langle x(t) \rangle$
- •What happens when we have a huge number of particles that interact with each other?
- Statistical mechanics: Equilibration on some time scale $\langle x(t) \rangle \rightarrow x_{\infty}$
- •What is the time scale?

J. Sirker, N. P. Konstantinidis, F. Andraschko, and N. Sedlmayr, Phys. Rev. A **89**, 042104 (2014)

Real world systems

56.6

61.4

56 8

 A_0 A_1 A_2 A_3 A_4 A_5

0

0 2 4 6 extre C(τ) 0.2 \sim Non-stationary for extremely long time compared to microscopic scales!

Temperatures (daily)

Eukaryotic flagellum oscillations (Wan, Goldstein. PRL 2014)

Keeping on with the attempt to characterize types of broken Understand emergence of periodic time *further phenomenon seems to be identifiable and either* dynamics on a fundamental quantum level! *or periodicity) in the time domain.* Goal:

*-*P. W. Anderson, More is different

Naïve approach

- •We have a system with a macroscopic number of **interacting** particles
- •Diagonalise: $H|\psi_{k}\rangle = E_{k}|\psi_{k}\rangle$
- Frequencies: $\omega_{k,j} = E_k E_j$
- Solution for **generic** initial state $|\psi_0\rangle$ for **generic** observable O :
- $\langle O(t)\rangle = \sum_{j,k} e^{-\left(\omega_{j,k}\right)} \langle \psi_j|O|\psi_k\rangle \langle \psi_0|\psi_k\rangle \langle \psi_j|\psi_0\rangle$
- \cdot $\langle O(t \rightarrow \infty) \rangle$ goes to constant value $\langle O \rangle_{\infty}$ (statistical mechanics) $(continuous'spectrum - happens in finite time)$

with random frequency and phase structive interference - depl Randon Destructive interference - dephasing A sum of an infinite number of waves

• $\langle O(t \rightarrow \infty) \rangle = B \exp(i \omega t) + h.c$

 \overline{u}

 $Re\{\lambda_i\}$

$$
\dot{\rho} = \mathcal{L}\rho = -i[H, \rho]
$$

$$
+ \sum_{\mu} \left(2 L_{\mu} \rho L_{\mu}^{\dagger} - L_{\mu}^{\dagger} L_{\mu} \rho - \rho L_{\mu}^{\dagger} L_{\nu} \right)
$$

$$
\mathcal{L}\rho_i = \lambda_i \rho_i
$$

 $\rho(t) = \sum_i e^{\lambda_i t} c_i \rho_i$

Open system

- negative real parts
- **dissipation**
- not necessarily DFS!
- (often more general)

Necessary* and sufficient for \bigcirc $[H, A] = -\omega A$ and $\left[A, L^{\dagger}_{\mu} \right] = \left[A, L_{\mu} \right] = 0 \quad \forall \mu$

erc

Non-stationarity in **closed** many-body quantum systems: Examples

Example #1: Heisenberg XXZ spin-1/2 chain

- •Standard model of quantum magnetism (integrable)
- •Add magnetic field to XXZ spin chain
- $\cdot H = \sum_j \sigma_j^x \sigma_{j+1}^x + \sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z + 2h \sigma_j^z$
- •Dynamical symmetries:

$$
[H, Y(\phi)] = h mY(\phi)
$$
(with $\Delta = \cos \eta, \eta = \frac{2l}{m}\pi$)

•Quasilocal

M Medenjak, B Buca, D Jaksch. Phys. Rev. B **102**, 041117 (2020). Construction of Y's: obtainable via Bethe Ansatz - Zadnik, Medenjak, Prosen, Nuc. Phys. B

m-point correlator (and higher) that have non-zero overlap with Y's will oscillate forever with period $T = 2\pi/(h m)$

Autocorrelation function at infinite temperature

Figure 2: DMRG (N=100, h=1) and analytical result $C = \frac{1}{C}$ 64 $27\sqrt{3}$ $(\frac{\sqrt{3}}{\pi}-8),$ With $\Delta = \cos(\frac{2l}{m}\pi)$

Example #2: "Spin lace"

•(Almost) any reflection symmetric interaction on the below quasi-1D geometry

- •Stable to any coupling (dissipation)
- $\bullet A = P_{|\uparrow\downarrow \downarrow\uparrow\rangle} \otimes \sigma^+ \otimes P_{|\uparrow\downarrow \downarrow\uparrow\rangle}$
- NB Apart from A's there are also conservation laws $Q = [A, A^{\dagger}]$ and conservation due to reflection

- We could couple the spin-1/2 plaquette to anything
- Let us choose the following system ($k = 0, 1, ... \frac{N-4}{2}$ $\frac{-4}{3}$

- Superextensive number of dynamical symmetries and conservation laws superintegrable!
- **Stable to local perturbation of arbitrary strength including dissipative**
- Only way to break the above properties is to break the Z_2 reflection symmetry on each and every site

Quantum many-body attractor

- We study linear response at infinite temperature
- Autocorrelation functions
- Observables that have overlap with $A(Q)$ will oscillate (relax to finite values)
- Other observables ergodic (relax to 0)

erc

Non-stationarity in **open** many-body quantum systems; Examples

Open system example #1: Interacting fermions with two spin states in an optical lattice

Open system example

BB, J. Tindall, and D. Jaksch, Nat. comms. 10, 1730 (2019)

• Hubbard Hamiltonian on a D-dimensional bipartite lattice with M sites

$$
H_{\rm Hub} = -t \sum_{\langle i,j \rangle,\sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + h.c. \right) + U \sum_i n_{i\uparrow} n_{i\downarrow} + \sum_i \left(\epsilon_i - \mu \right) n_i + \frac{B}{2} \left(n_{i\uparrow} - n_{i\uparrow} \right)
$$

• Spin symmetry

• with

 $H, S^z = 0,$ $[H, S^{\pm}] = \pm B S^{\pm}$

erc

- $H_{\text{Hub}} = -t \sum_{\langle i,j \rangle,\sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + h.c. \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow} + \sum_{i} \left(\epsilon_{i} \mu \right) n_{i} + \frac{B}{2} \left(n_{i\uparrow} n_{i\uparrow} \right)$
- Spin agnostic external dissipation will dephase the lattice wave function locally

$$
L_{\mu} = \gamma_{\mu} n_{\mu}
$$

M. Bruderer and D. Jaksch, New J. Phys. **8**, 87 (2006)

Initial ground state of the Hubbard model without disorder and $U = \sqrt{2}\tau$, $B = 0$ At $t = 0$ quench to $U = \tau$, $B = 0.8\tau$ and disorder switched

Essentially setup from: Phys. Rev. X 9, 041014 (2019), but for fermions; and Phys. Rev. X 7, 041047 (2017)

Open system example #2: Two component BEC in a lossy optical cavity

Approximate example: spinor BEC

N. Dogra, M. Landini, K. Kroeger, L. Hruby, T. Donner, T. Esslinger, Dissipation Induced Structural Instability and Chiral Dynamics in a Quantum Gas, *Science* 366.6472 (2019): 1496-1499.

Spinor BEC

N. Dogra, M. Landini, K. Kroeger, L. Hruby, T. Donner, T. Esslinger, Dissipation Induced Structural Instability and Chiral Dynamics in a Quantum Gas, *Science* 366.6472 (2019): 1496-1499.

• We can model the experiment by a master equation

•
$$
H = \hbar \omega a^{\dagger} a + \hbar \omega_0 (S_{z+} + S_{z-})
$$

 $+ \frac{\hbar}{\sqrt{N}} [\lambda_D (a^{\dagger} + a)(S_{x+} + S_{x-}) + i \lambda_S (a^{\dagger} - a)(S_{x+} - S_{x-})]$

- $S_{\alpha,+}$ collective spin operators + and Zeeman states
- $\lambda_{D,S}$ coupling (depend on the angle of the field)
- $\cdot \omega$ -detuning
- $\cdot \omega_0$ -bare energy
- and include cavity loss

$$
\dot{\rho} = -\frac{i}{\hbar} [H_c, \rho] + \frac{\kappa}{2} (2a\rho a^\dagger - a^\dagger a\rho - \rho a^\dagger a)
$$

Closely related to Dicke model with $\lambda_s = 0$

Beyond mean field

el

- Approximate dynamical symmetry in the strong loss limit $\kappa \to \infty$
- Perform perturbation theory in large $\kappa = \kappa' \gamma$, $\gamma \gg 1$
- In first (beyond 0) order the stationary state eigenvalue 0 is split into $\lambda =$ $i (n-m)\omega_0 + O\left(\frac{1}{\nu^2}\right)$ $\left(\frac{1}{\gamma^2}\right)$, $n,m=\pm 1,\pm 2,...$
- •Quantum Zeno dynamics!

Higher order correlations

- **Goal: Understanding the emergence of complex dynamics from quantum laws and reconciliation with statistical physics.** Notion of **dynamical symmetries** crucial for nonstationary dynamics!
- Physical examples (Heisenberg XXZ spin chain, fermions in BEC, etc)
- Open questions: Hydro, transport in the presence of many-body non-stationarity, long-range interactions (dipolar) etc. Applications for metrology, signal filtering, quantum sensing, etc.
- DS for quantum scars (PRB102, 085140 (2020)), time crystals(PRL125, 060601 (2020))

Synchronization: BB, Booker, Jaksch. arXiv:2103.01808 ; J. Tindall, C. Sanchez Munoz, BB and D. Jaksch, 2020 New J. Phys. **22** 013026

Dissipation induced η -pairs: J. Tindall, BB, J.R. Coulthard, D. Jaksch, Phys. Rev. Lett. **123**, 030603 (2019)

B. Buca, J. Tindall, and D. Jaksch, Nat. comms. 10, 1730 (2019)