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•We will focus on (physically measurable) local quantities (e.g. particle 
number, heat, charge, position of a particle, magnetization, …)

•Explicit long-time time-dependence of measurable quantities 𝑥(𝑡)

•What happens when we have a huge number of particles that interact with 
each other?

•Statistical mechanics: Equilibration on some time scale 𝑥(𝑡) → 𝑥∞

•What is the time scale?

Ivan Airola, Wikimedia

What is non-stationarity?

A simple harmonic oscillator

https://commons.wikimedia.org/wiki/User:Ivan_Airola


Quantum physics

J. Sirker, N. P. Konstantinidis, F. Andraschko, and N. Sedlmayr, Phys. Rev. A 89, 042104 (2014)

Open systemsRelaxation in closed systems

Fast (~10𝜏𝑠) relaxation to stationarity:

Time-independent probability distributions

(e.g. thermal/equilibrium states, or NESS)



Real world systems

Temperatures (daily)
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1. deflagellation   2. heatshock   3. normal   4. flow   5. red light

Eukaryotic flagellum oscillations 

(Wan, Goldstein. PRL 2014)

Non-stationary for extremely long time 

compared to microscopic scales!



Complex dynamics

Keeping on with the attempt to characterize types of broken 

symmetry which occur in living things, I find that at least one 

further phenomenon seems to be identifiable and either 

universal or remarkably common, namely, ordering (regularity 

or periodicity) in the time domain.

-P. W. Anderson, More is different

Goal:

Understand emergence of periodic time

dynamics on a fundamental quantum level!



Naïve approach

•We have a system with a macroscopic number of interacting particles

•Diagonalise: 𝐻 𝜓𝑘 = 𝐸𝑘 𝜓𝑘

•Frequencies: 𝜔𝑘,𝑗 = 𝐸𝑘 − 𝐸𝑗

•Solution for generic initial state 𝜓0 for generic observable 𝑂 : 

• 𝑂(𝑡) = σ𝑗,𝑘 𝑒
−𝑖𝜔𝑗,𝑘𝑡⟨𝜓𝑗|𝑂 𝜓𝑘 𝜓0 𝜓𝑘 𝜓𝑗 𝜓0

• 𝑂(𝑡 → ∞) goes to constant value 𝑂 ∞ (statistical mechanics) 

(continuous spectrum – happens in finite time)

No special structure 

Excite macroscopic number of 

eigenmodes

Random!

A sum of an infinite number of waves

with random frequency and phase

Destructive interference - dephasing 



Eigenfrequencies 𝜆𝑖 of the dynamics

Im{𝜆𝑖}

Re{𝜆𝑗}

g
a
p

Dynamical symmetries:

𝐻, 𝐴 = −𝜔𝐴,     𝐴 ∝ 𝑉 (extensive) and 𝑡𝑟𝐴𝑂 ≠ 0

𝜔

𝜔

• Maximum entropy

• Systems goes to t-GGE: 

• 𝝆 𝒕 → ∞ =
𝒆𝒙𝒑(−𝜷𝑯+𝝁𝑸+𝝁𝑨 𝒆

𝒊𝝎𝒕𝑨+𝒉.𝒄)

𝒁

• Operators that have overlap with 𝑨: 
𝑨𝑶 ≠ 𝟎

• 𝑶(𝒕 → ∞) = 𝑩 𝒆𝒙𝒑 𝒊𝝎𝒕 + 𝒉. 𝒄

𝜆𝑗 = 𝑖𝜔



Eigenvalues 𝜆𝑖 of the dynamics

Im{𝜆𝑖}

Re{𝜆𝑖}

𝜌𝑠𝑠
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ሶ𝜌 = ℒ𝜌 = −i 𝐻, 𝜌

+෍

𝜇

2 𝐿𝜇 𝜌 𝐿𝜇
† − 𝐿𝜇

†𝐿𝜇 𝜌 − 𝜌𝐿𝜇
†𝐿𝜇

ℒ𝜌𝑖 = 𝜆𝑖𝜌𝑖

𝜌 𝑡 = σ𝑖 𝑒
𝜆𝑖𝑡 𝑐𝑖𝜌𝑖

Open system

• negative real parts

• dissipation

• not necessarily DFS!

• (often more general)

Necessary* and sufficient for

𝐻, 𝐴 = −𝜔𝐴 and         𝐴, 𝐿𝜇
† = 𝐴, 𝐿𝜇 = 0 ∀𝜇



Non-stationarity in 

closed many-body quantum systems:

Examples



Example #1: Heisenberg XXZ 

spin-1/2 chain



•Standard model of quantum magnetism (integrable)

•Add magnetic field to XXZ spin chain

•𝐻 = σ𝑗 𝜎𝑗
𝑥𝜎𝑗+1

𝑥 + 𝜎𝑗
𝑦
𝜎𝑗+1
𝑦

+ Δ𝜎𝑗
𝑧𝜎𝑗+1

𝑧 + 2h 𝜎j
𝑧

•Dynamical symmetries:

𝐻, 𝑌(𝜙) = ℎ 𝑚𝑌(𝜙)(with Δ = cos 𝜂,𝜂 =
2𝑙

𝑚
𝜋) 

•Quasilocal

Example: For Δ = cos2𝜋/3 = −1/2

𝑌 𝜙 = σ𝑗 csc 𝜙 𝜎𝑗
+𝜎𝑗+1

+ 𝜎𝑗+2
+ +higher operator terms

M Medenjak, B Buca, D Jaksch. Phys. Rev. B 102, 041117 (2020). Construction of Y’s: obtainable via Bethe Ansatz - Zadnik, 
Medenjak, Prosen, Nuc. Phys. B      

Closed system example: XXZ

4,5 … n site terms



Fractals!

m-point correlator (and higher) that have non-zero overlap with Y’s will 

oscillate forever with period T = 2𝜋/(ℎ 𝑚)



Autocorrelation function at infinite 
temperature

Figure 2: DMRG (N=100, h=1) and analytical result 𝐶 =
1

64

27 3

𝜋
− 8 ,

With Δ = cos Τ2𝑙 𝑚𝜋



Example #2: “Spin lace”



• (Almost) any reflection symmetric interaction on the below quasi-1D 

geometry

BB, A. Purkayastha, G. Guarnieri, M. Mitchison, D. Jaksch, J. Goold. arXiv:2008.11166 (2020). 

Closed system example: Spin lace
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𝟙

𝟙 ⊗𝐴⊗ 𝟙
Strictly local!

𝟙

Required axis of 

symmetry



•Stable to any coupling (dissipation)

•𝐴 = 𝑃|↑↓−↓↑⟩ ⊗𝜎+ ⊗𝑃|↑↓−↓↑⟩

•NB Apart from 𝐴’s there are also conservation laws Q = [𝐴, 𝐴† ] and 

conservation due to reflection

BB, A. Purkayastha, G. Guarnieri, M. Mitchison, D. Jaksch, J. Goold. arXiv:2008.11166 (2020). 

Stability



• We could couple the spin-1/2 plaquette to anything 

• Let us choose the following system (𝑘 = 0,1,…
𝑁−4

3
)

• Superextensive number of dynamical symmetries and conservation laws – superintegrable! 

• Stable to local perturbation of arbitrary strength including dissipative

• Only way to break the above properties is to break the 𝑍2 reflection symmetry on each and every site 

BB, A. Purkayastha, G. Guarnieri, M. Mitchison, D. Jaksch, J. Goold. arXiv:2008.11166 (2020). 

Spin lace

𝟙 ⊗𝐴⊗ 𝟙𝟙 ⊗𝐴⊗ 𝟙

…

𝟙 ⊗𝐴1 ⊗ 𝟙



• We study linear response at infinite temperature

• Autocorrelation functions

• Observables that have overlap with 𝐴(𝑄) will oscillate (relax to finite values)

• Other observables ergodic (relax to 0)

BB, A. Purkayastha, G. Guarnieri, M. Mitchison, D. Jaksch, J. Goold. arXiv:2008.11166 (2020). 

Quantum many-body attractor



Non-stationarity in 

open many-body quantum systems;

Examples



Open system example #1: Interacting

fermions with two spin states in an 

optical lattice



Open system example

BB, J. Tindall, and D. Jaksch, Nat. comms. 10, 1730 (2019)



Hubbard model and symmetries

• Hubbard Hamiltonian on a D-dimensional bipartite lattice with 𝑀 sites

𝐻Hub = −𝑡 ෍

𝑖,𝑗 ,𝜎

𝑐𝑖𝜎
† 𝑐𝑗𝜎 + ℎ. 𝑐. + 𝑈෍

𝑖

𝑛𝑖↑𝑛𝑖↓ +෍

𝑖

( 𝜖𝑖 − 𝜇)𝑛𝑖 +
𝐵

2
(𝑛𝑖↑ − 𝑛𝑖↑)

• Spin symmetry

𝑆𝑧 =෍

𝑗

𝑆𝑗
𝑧, 𝑆𝑗

𝑧 =
1

2
(𝑛𝑗,↑ − 𝑛𝑗,↓),

𝑆+ =෍

𝑗

𝑆𝑗
+, 𝑆𝑗

+ = 𝑐𝑗,↑
† 𝑐𝑗,↓

𝑆− =෍

𝑗

𝑆𝑗
−, 𝑆𝑗

− = 𝑐𝑗,↓
† 𝑐𝑗,↑,

• with 

𝐻, 𝑆𝑧 = 0, 𝐻, 𝑆± = ± 𝐵 𝑆±



M. Bruderer and D. Jaksch, New J. Phys. 8, 87 (2006)

External symmetry selective dissipation

• Spin agnostic external dissipation will dephase the lattice wave function locally

𝐿𝜇 = 𝛾𝜇 𝑛𝜇



Disorder and temperature

Essentially setup from: Phys. Rev. X 9, 041014 (2019), but for fermions; and Phys. Rev. X 7, 041047 (2017)

Initial ground state of the Hubbard model without disorder and 𝑈 = 2𝜏, 𝐵 = 0
At 𝑡 = 0 quench to 𝑈 = 𝜏, 𝐵 = 0.8𝜏 and disorder switched



Open system example #2: 

Two component BEC in a 

lossy optical cavity



Approximate example: spinor BEC

N. Dogra, M. Landini, K. Kroeger, L. Hruby, T. Donner, T. Esslinger, Dissipation Induced Structural Instability and Chiral

Dynamics in a Quantum Gas, Science 366.6472 (2019): 1496-1499.



Spinor BEC

N. Dogra, M. Landini, K. Kroeger, L. Hruby, T. Donner, T. Esslinger, Dissipation Induced Structural Instability and Chiral

Dynamics in a Quantum Gas, Science 366.6472 (2019): 1496-1499.



Model

• We can model the experiment by a master equation

• 𝐻 = ℏ𝜔𝑎†𝑎 + ℏ𝜔0 𝑆𝑧+ + 𝑆𝑧−

+
ℏ

𝑁
[𝜆𝐷 𝑎† + 𝑎 𝑆𝑥+ + 𝑆𝑥− + 𝑖𝜆𝑆 𝑎† − 𝑎 𝑆𝑥+ − 𝑆𝑥− ]

• 𝑆𝛼,± - collective spin operators + and – Zeeman states 

• 𝜆𝐷,𝑆 - coupling (depend on the angle of the field)

• 𝜔-detuning

• 𝜔0-bare energy

• and include cavity loss

ሶ𝜌 = −
𝑖

ℏ
𝐻𝑐, 𝜌 +

𝜅

2
2𝑎𝜌𝑎† − 𝑎†𝑎𝜌 − 𝜌𝑎†𝑎

Closely related to Dicke model with 𝝀𝑺 = 𝟎



•Approximate dynamical symmetry in the strong loss limit 𝜅 → ∞

•Perform perturbation theory in large 𝜅= 𝜅′𝛾, 𝛾 ≫ 1

• In first (beyond 0) order the stationary state eigenvalue 0 is split into 𝜆 =

𝑖 𝑛 −𝑚 𝜔0 + 𝑂
1

𝛾2
, 𝑛,𝑚 = ±1, ±2, …

•Quantum Zeno dynamics!

B.B and D. Jaksch, Dissipation induced non-stationarity in a quantum gas. Phys. Rev. Lett. 123, 260401 (2019)

Beyond mean field



Higher order correlations

•We can access higher order correlations

𝜆𝐷 = 9.6𝑘𝐻𝑧, 𝜆𝑆 =
0.17𝑘𝐻𝑧, 𝜔 = 246𝑘𝐻𝑧

𝜆𝐷 = 6.3𝑘𝐻𝑧, 𝜆𝑆 =
7.25𝑘𝐻𝑧, 𝜔 = 46𝑘𝐻𝑧

Spin squeezing in the y-

direction can be made arbitrarily 
small (depending on 𝑎†𝑎(0) )



• Goal: Understanding the emergence of complex dynamics from quantum laws and 

reconciliation with statistical physics. Notion of dynamical symmetries crucial for non-

stationary dynamics!

• Physical examples (Heisenberg XXZ spin chain, fermions in BEC, etc)

• Open questions: Hydro, transport in the presence of many-body non-stationarity, long-range 

interactions (dipolar) etc. Applications for metrology, signal filtering, quantum sensing, etc.

• DS for quantum scars (PRB102, 085140 (2020)), time crystals(PRL125, 060601 (2020))

Summary and outlook

B. Buca, J. Tindall, and D. Jaksch, Nat. comms. 10, 1730 (2019)

Synchronization: BB, Booker, Jaksch. arXiv:2103.01808 ;

J. Tindall, C. Sanchez Munoz, BB and D. Jaksch, 2020 New J. 

Phys. 22 013026

Dissipation induced 𝜂-pairs: J. Tindall, BB, 

J.R. Coulthard, D. Jaksch, Phys. Rev. Lett. 

123, 030603 (2019)


