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A	crucial	ingredient	for	realizing	various	phases	of	matter	is	the	availability	of	interactions	with	different	
range	and	strength.	Atoms	excited	to	Rydberg	states	exhibit	 long-range,	switchable,	 interactions	that	are	
many	 orders	 of	 magnitude	 stronger	 than	 the	 typically	 short-range	 interactions	 between	 ground-state	
neutral	atoms.	In	addition,	relaxation	and	dissipation	can	be	introduced	in	this	system	in	a	controlled	way.	
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Spin models using Rydbergs

• Ising interaction

• Spin rotation

• XY interaction
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Spin models using Rydbergs

• Gauge fields

• Nonlinear 
transport
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Density-dependent Peierls phases
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Rydberg atom arrays

gs

• atoms in tweezer arrays = lattice structures
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Peierls phases

indirect second-order hopping

atom 1

atom 2

atom 3

direct hopping
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Nonlinear Peierls phases

indirect second-order hopping

atom 1

atom 2

atom 3
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Experiment

V. Lienhardt et al. Phys.Rev.X 10, 021031 (2020)

atom 1

atom 2

atom 3
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FIG. 4. Demonstration of density-dependent hopping for two ex-
citations. (a) The presence of a |− i excitation on site 3 prevents the

internal state-flipping process responsible for the complex hopping
of the |− i excitation from 2 to 1: only the real coupling remains.

(b) Probability to be in thedoubly excited three-sitestates |011i (tar-
geted initial state), |101i or |110i as a function of the interaction

time⌧. Upper panel: simulations in an ideal case including the three
levels of the V-structure. Lower panel: experimental results together

with the simulation taking into account experimental parameters, in-
cluding state preparation. (c) Hopping processes to go from site 1 to

site2 in the two-excitation case, showing thedirect coupling and the
fourth-order process via |0+ + i .

field, a single anyon (a hole) exhibits a symmetric dynamics
in a triangle, which is the result observed in Fig. 4. Now plac-
ing two anyons (two holes) in the triangle, we are back to
the case studied in Sec. III, where we observea chiral motion
(Figure 3): in the anyon interpretation, this is due to the sta-
tistical phase under exchange of the two anyonic particles or
equivalently to the fact that one of the two anyonic particles
carries a magnetic flux for the other one. The value of this
magnetic flux through the triangle is the statistical phase of
these anyons. The mapping onto anyons can be made rigor-
ousand is presented in Appendix B.

We still observe a residual asymmetry in the dynamics, see
Fig. 4(b), which is also present in the simulation. This indi-
cates that thecomplex-valued hopping isnot fully suppressed.
Following thesameeffectiveHamiltonian approach astheone
outlined in Sec. II, the internal state-flipping hopping is now
a fourth-order process, as shown in Figure 4(c). Considering
thehopping from site1 to site2, theholecan directly hop with
an amplitude − tb, or virtually go through |+ + 0i , leading to
a total amplitude tei ' = tb + w4/ µ3e− 4i ⇡ / 3. As w ⌧ µ,
thecomplex part of this hopping isextremely small compared
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FIG. 5. Tunability of the Peier ls phase. (a) Tunable geome-
try used for this experiment based on an isosceles triangle with

r 12 = r 23 = 11µm. (b) Calculated evolution of the magnetic flux
threading through the isosceles triangle as a function of γ . (c) Ex-

perimental imbalance I between site1 and site3 (see text) after hav-
ing prepared an excitation on site 2 and letting the system evolve for

⌧= 0.4µs, asafunction of theangleγ . A positive imbalancemeans
that theexcitation mainly resideson site1. Thethree insets represent

the triangle configurations for threevaluesof γ , marked on thegraph
by the three dotted lines. The dashed line is the simulation.

to the single particle case, thus leading to the observed quasi-
symmetric dynamics.

V. TUNABILITY OF THE PEIERLS PHASE

In a final experiment, we demonstrate the control of the
Peierls phase in thesingleexcitation caseby tuning thegeom-
etry of the triangle while keeping the same value for µ. To do
so, westudy an isosceles triangle parametrized by theangleγ,
see Fig. 5(a). In this configuration, the distance between sites
1 and 3 varies with γ. The effective coupling, and hence the
Peierls phase, is then different for each link: the direct hop-
pings are t12 = t23 and t13 = t12 with = 1/ (2cos[γ/ 2])3;
the virtual coupling are w2ei γ / µ for the 1 ! 2 and 2 ! 3
couplings and w2e− 2i γ / µ for the 3 ! 1 coupling. The vari-
ation of the magnetic flux through the triangle, which is the
sum of the three Peierls phases, is represented in Fig. 5(b) as
a function of the angle γ. It exhibits an almost linear depen-
dence for γ 2 [0◦ , 90◦ ].

Our demonstration of the control over the Peierls phase is
achieved by observing how a single |− i excitation prepared
initially on site 2 splits between site 1 and site 3 after a given
evolution time: for a negativeflux (modulo 2⇡ ) the excitation
propagates towards site 1, while it propagates towards site 3
for apositiveflux. For zero flux (modulo ⇡ ) thepropagation is
symmetric. Fig. 5(c) shows the result of the experiment. We
plot the population imbalance between site 1 and site 3, I =
(P|100i − P|001i )/ (P|001i + P|100i ), at time⌧= 0.4µs, as a
function of theangleγ. Wechose⌧= 0.4µsasit corresponds
to theexcitation mainly located on sites1and 3 for γ = 0◦ . As
expected, weobserve that the imbalance varies with theangle
γ, and hence with the magnetic flux (Fig. 5b). For γ = 0◦



10

Emerging gauge fields 
in zig-zag ladder
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Zig-zag ladder

nonlinear hopping
density-density interaction

linear hopping
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Phase diagram

Emerging e↵ective gauge fields in arrays of Rydberg atoms 7

...... ......

............
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b)

c)
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Figure 2: Visualizat ion of all hopping processes in the one-dimensional Zig-Zag ladder,

including their respect ive dipole operators from (2). (a) All NN hopping processes.

Those coupling sites of the same sub-chain acquire a geometric factor of R ! 2R cos(↵)

to the interatomic distance. The arrows drawn in the figure correspond to both NN

hopping and sites coupled via the NN interact ion. (b) Indirect hopping terms between

NN, acquiring opposite Peierls phases depending on the direct ion. (c) Two exemplary

NNN hopping terms and their associated dipole operator terms. By comparing the two

we can see that the total Peierls phase attached to such a process is staggered, i.e. it

changes sign going from the upper to the lower chain. The same holds for the other

non-resonant processes. (d) Indirect hopping terms connecting sites j − 2 and j + 1

(third-NN) as well as j and j + 4 (fourth-NN). For the case of ↵ = ⇡
3
, all these indirect

terms are equal in magnitude.

interact ion preferring an ordered state for g > 0.5 and ⌘! 1 ( rat her : ⌘g 1 and

⌘! 1 , even for small g ordered if ⌘large enough) (phase IV) and hopping

processes which drive the system into a liquid state (phases I - I I I). For small values of

⌘there is furthermorea competit ion between direct hopping processes and second-order

hopping processes with density-dependent Peierls phases, which is controlled by g. Of

part icular interest for us are e↵ects caused by the complex, density dependent hopping

terms.

To attain a qualitat ive overview of the transit ion points between these phases we

have calculated the dimensionless ground-state fidelity

f (λ) =
2

N

1− |hΦ0(λ)|Φ0(λ + δλ)i |

δλ2
, δλ ! 0, (16)

where |Φ0(λ)i is the many-body ground state of the system with N part icles, and λ

denotes a system parameter (g or ⌘) that is varied, while keeping the other constant.

(Changed everyt hing t o λ) In the thermodynamic limit N ! 1 and within thesame

phase f is a smooth funct ion of the system parameter(s) λ but develops a singularity at

a phase transit ion. In a finite system the ground-state fidelity remains finite but shows

• half filling

• ground-state fidelity
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Liquid to density order

• density with OBC
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Liquid phases ?
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• ground-state findelity:

• average current along sub-chains:

I
II

III • fermion mean-field Hamiltonian:
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Figure 6: (a) Currents I j ! j + 2 for even j (sub-chain A) as a funct ion of g within the

liquid phase for ⌘= 1. The values of g at which I j ! j + 2 is discontinuous are identical

to the peaks of Fig. 5. (b) Same as (a) as funct ion of ⌘. One not ices that the current

decays as 1/⌘upon entering the ordered regime.

The transformed Hamiltonian then reads

Ĥ = − J
X

j

ĉ
†
j + 1ĉj

h
1 + 2g

⇣
e⌥

2⇡ i
3 (1− n̂j −1) + e±

2⇡ i
3 (1− n̂j + 2)

⌘i

− J
X

j

ĉ
†
j + 2ĉj

h
(1− 2n̂j + 1) + 2ge±

4⇡ i
3 (1− n̂j + 1)

i
(21)

− J
X

j

ĉ
†
j + 3ĉj 2g

h
e⌥

2⇡ i
3 (1− 2n̂j + 2)(1− n̂j + 1) + e±

2⇡ i
3 (1− 2n̂j + 1)(1− n̂j + 2)

i

− J
X

j

ĉ
†
j + 4ĉj 2g(1− 2n̂j + 1)(1− n̂j + 2)(1− 2n̂j + 3)

− J
X

j

ĉ
†
j ĉj g⌘[(1− n̂j −1) + (1− n̂j + 1) + (1− n̂j −2) + (1− n̂j + 2)] + h.a.

where we have used the ident ity e± i⇡ n̂ j = (1− 2n̂j ). Now we apply a mean-field

approximation, replacing the part icle number operators in the higher-order terms by

expectat ion values, assuming a uniform half filling. The corresponding mean-field

Hamiltonian then reads

ĤMF = − J
X

j

ĉ
†
j + 1ĉj (1− g) − J

X

j

ĉ
†
j + 2ĉj ge±

4⇡ i
3 + h.a. − J

X

j

ĉ
†
j ĉj 2g⌘ (22)

One recognizes that the hoppings along the upper and lower sub-chain are complex

and contain fixed Peierls phases ± 4⇡ / 3 of opposite sign, which cannot be gauged away,

except at g = 1. These phases correspond to a homogeneous e↵ect ive gaugefield, which

leads to chiral currents along the upper and lower chain. Furthermore the NN hopping

j ! j + 1 changes its sign when g becomes larger than unity. So one qualitat ively

expects a sign change in the first-order correlat ions ĥc
†
j ĉj + 1i = ĥb

†
j b̂j + 1i when going from

very small values of g to very large ones. The transit ion actually occurs at g = 0.5,

which is due to the presence of the NNN hopping j ! j + 2. This can be seen most

easily from the single-part icle spectrum of ĤMF , which can be writ ten in momentum

?

III
II

I
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Current vortices
• open boundary conditions

current vortices
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Current vortices
• fermion Hamiltonian

Emerging e↵ective gauge fields in arrays of Rydberg atoms 14

...... ...... ......

Figure 9: NN (top row) and NNN (center row) currents for ⌘= 2 and di↵erent values

of g. One clearly recognizes the format ion of a regular pat tern of circular currents in

the case of large g. This pattern is illust rated in the bottom row.

dominant over t he direct processes (2g 1) we observe t hat bot h t he N N

and t he N N N cur rent s feat ure a per iodici t y of four si t es. We can draw

t hese cur rent s as ar rows between t he sit es (bot t om row of Fig 9) t o see t hat

t he cur rent flows around plaquet t es of four sit es in alt ernat ing manner . To

descr ibe t his e↵ect , we not e t hat in t he l imit of g 1 t he H amilt onian (15)

feat ures a U(1) gauge symmet ry. To see t his we rewrite the fermion Hamiltonian

(21) in the following form

Ĥ = − J
X

j

ĉ
†
j + 1ĉj

h
1 + 2gÛj + 1,j 1− n̂j − 1n̂j + 2

i
+ h.a.

− J
X

j

ĉ
†
j + 2ĉj

h
(1− 2n̂j + 1) + 2gÛj + 2,j (1− n̂j + 1)

i
+ h.a. (26)

+ J
X

j

ĉ
†
j + 3ĉj 2gÛj + 3,j 1− n̂j + 1n̂j + 2 + h.a.

− J
X

j

ĉ
†
j + 4ĉj 2gÛj + 4,j (1− n̂j + 2) + h.a. (27)

− J
X

j

ĉ
†
j ĉj 2g⌘

h
(1− n̂j − 1) + (1− n̂j + 1) + (1− n̂j − 2) + (1− n̂j + 2)

i
.

• unitary link operators 
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we use t he Φ̂L oop on t he 4-sit e unit cel l. I n t hat case, t he classical flux is 4⇡ / 3

As shown in Fig.4, density-density interact ions drive the many-body ground state in

an ordered state with a density wave for large values of ⌘. For the ground states (17)

one would find e.g. in state | 
(1)
0 i = |1i 0|1i 1|0i 2|0i 3|1i 4|1i 5 . . .

h⇥̂0i = ⇡ , h⇥̂1i =
⇡

3
h⇥̂2i =

⇡

3
, h⇥̂3i = ⇡ .

Thus the emerging total flux oscillates around the classical value Φc = 2⇡ / 3. Going

away from the large⌘limit , the density modulat ions survive even in the liquid phase

and the oscillat ing fluxes will generate vort ices of part icle currents on top of the global

chiral currents, shown in Fig. 6. In Fig. ?? we have shown for a finite system with open

boundaries.

We int roduce t he order paramet er f t o descr ibe t he t ransit ion t o t he flux-

ordered phase:

χ =
1

N

X

j = 2n,2< n< L − 4

(− 1)
n

D
Φ̂

( j )
L oop

E
(32)

I n t he case of large ⌘, we find long-range ordered in Φ̂L oop, which impl ies a

finit e value for f (see 10a). For ⌘< 3 we find liquid-l ike behaviour .
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Figure 10: Left : Order parameter f for the case of ⌘= 10 (ordered phase), excluding

the classical flux of 2⇡ / 3. Zoom-ins show the plaquette fluxes Φ̂j in the highlighted

region. Right: plaquette fluxes Φ̂j for ⌘= 1, displaying a liquid-like behaviour.

• show build-up of true vortex lat t ice for ⌘> ⌘c

5.2. spontaneous gauge field generation

When the density-density interact ion is switched o↵, i.e. for ⌘= 0, one naively expect

no density correlat ions as predicted by the mean field model, (22). The absence of

such correlat ions correspond to a vaccuum state of the emerging quantum gauge fields

Φ̂i . Furthermore density modulat ions had been ident ified as the origin of phase II,

which should thus not be present for vanishing ⌘. A closer inspection of the ground-

state fidelity Fig. 11 reveals, however, that this phase survives in that limit ., while it

disapears in the mean-field limit , Fig. 11b.

flux lattice
induced by density 

order
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Spontaneous gauge field creation

• What happens at              ??             

→ still liquid-like flux correlations             
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Variational approach

→ Emerging gauge field minimizes energy    
despite formation of density wave
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Rydberg Haldane model
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Honeycomb lattice

• Hamiltonian

Haldane model
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Phase diagram

Emerging e↵ective gauge fields in arrays of Rydberg atoms 7
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a)

b)

c)
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Figure 2: Visualizat ion of all hopping processes in the one-dimensional Zig-Zag ladder,

including their respect ive dipole operators from (2). (a) All NN hopping processes.

Those coupling sites of the same sub-chain acquire a geometric factor of R ! 2R cos(↵)

to the interatomic distance. The arrows drawn in the figure correspond to both NN

hopping and sites coupled via the NN interact ion. (b) Indirect hopping terms between

NN, acquiring opposite Peierls phases depending on the direct ion. (c) Two exemplary

NNN hopping terms and their associated dipole operator terms. By comparing the two

we can see that the total Peierls phase attached to such a process is staggered, i.e. it

changes sign going from the upper to the lower chain. The same holds for the other

non-resonant processes. (d) Indirect hopping terms connecting sites j − 2 and j + 1

(third-NN) as well as j and j + 4 (fourth-NN). For the case of ↵ = ⇡
3
, all these indirect

terms are equal in magnitude.

interact ion preferring an ordered state for g > 0.5 and ⌘! 1 ( rat her : ⌘g 1 and

⌘! 1 , even for small g ordered if ⌘large enough) (phase IV) and hopping

processes which drive the system into a liquid state (phases I - I I I). For small values of

⌘there is furthermorea competit ion between direct hopping processes and second-order

hopping processes with density-dependent Peierls phases, which is controlled by g. Of

part icular interest for us are e↵ects caused by the complex, density dependent hopping

terms.

To attain a qualitat ive overview of the transit ion points between these phases we

have calculated the dimensionless ground-state fidelity

f (λ) =
2

N

1− |hΦ0(λ)|Φ0(λ + δλ)i |

δλ2
, δλ ! 0, (16)

where |Φ0(λ)i is the many-body ground state of the system with N part icles, and λ

denotes a system parameter (g or ⌘) that is varied, while keeping the other constant.

(Changed everyt hing t o λ) In the thermodynamic limit N ! 1 and within thesame

phase f is a smooth funct ion of the system parameter(s) λ but develops a singularity at

a phase transit ion. In a finite system the ground-state fidelity remains finite but shows

ground-state 
fidelity

• half filling
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Spin structure factor

(a) (b) (c) (d)

I

II

III IV I

5

I

II

III IV I

(a) µ = 1J , OBC

I III I

(b) µ = 1J , PBC

FIG. 4: Ground-state fidelity metric g over the detuning µ, for the case of (a) the full Hamiltonian as writ ten in (4)
and (b) the mean-field Hamiltonian of (7). In (a), the extremal value of g at the value µ = 0 occurs due to the sign

change in the detuning.

0
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FIG. 5: Visualizat ion of twisted boundary condit ions. Normal sites are printed opaquely, whereas transparent sites
are shown to illustrate the hopping across the boundary. The relevant site indices are printed in black. The complex

exponent ials represent the phase at tached to the respect ive hopping term. Hopping terms not noted here are
modified analogously.

scheme is demonstrated in 5. For each realizat ion, the phases ✓x and ✓y are drawn at random from the uniformly
dist ributed interval [openr ight]02⇡ . For further reference we will use P to denote the set of realizat ions, where

c. Spin Structure Factor The spin structure factor provides informat ion about spin order in the system and is
defined as

S (k ) =
1

L

LX

i ,j = 1

e− ik ·( r i − r j )
D

Ŝi · Ŝj

E
. (9)

where L = 24 again represents the size of the system. Usually in the context of disordered phases, we average this
quant ity over all configurat ions in the set Q to minimize the e↵ect of accidental symmetries induced by finite size
e↵ects.
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120o spin order
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Randomly twisted BC

→ disordered

(a) (b) (c) (d)

I

II

III IV I

Overlap with
optimum 
ground state
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Spin chirality

→ chiral spin liquid ??
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Summary

• Density-dependent complex hopping 
• Experimental verification for triangle

Rydberg-excitations transport

Zig-zag ladder
• Vortex and Flux lattice induced by density-density interaction 
• Self-generated gauge field

Honeycomb lattice

• Potential chiral spin liquid 

Other
• Z2 lattice-gauge theory
• Anyon Hubbard model 


