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Microwave	Coplanar	Waveguide	Resonators

• 2D analog of coaxial cable 

• Cavity defined by cutting center pin 

• Voltage antinode at “mirror”

Blais	et	al.,	PRA	69,	062320	(2014)

Modes of Transmission Lines Resonators

Fig. 2.6 Schematic illustration of a typical coplanar waveguide (CPW) resonator used in

circuit QED together with its discretized lumped-element equivalent circuit. The qubit lies

between the center pin and the adjacent ground plane and is located at an antinode of the
electric field, shown in this case for the full-wave resonance of the CPW. From Blais et

al.(2004).

Each segment of the line of length dx has inductance ! dx and the voltage drop along
it is −dx ∂x∂tΦ(x, t). The flux through this inductance is thus −dx ∂xΦ(x, t) and the
local value of the current is given by the constitutive equation

I(x, t) = −
1

!
∂xΦ(x, t). (2.121)

The Lagrangian for a system of length L (L is not to be confused with some discrete
inductance)

Lg ≡
∫ L

0
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The Euler-Lagrange equation for this Lagrangian is simply the wave equation

v2p∂
2
xΦ− ∂2tΦ = 0. (2.123)

The momentum conjugate to Φ(x) is simply the charge density

q(x, t) ≡
δLg

δ∂tΦ
= c∂tΦ = cV (x, t) (2.124)

and so the Hamiltonian is given by
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Transmon	Qubit

Ye	et	al.	Advances	in	AMO	Physics	49	(2003)
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is the purely quantum limit, where the atom and cavity evolve via their 
coherent coupling in the absence of dissipation. This system simply obeys 
the Schrodinger equation with the Jaynes-Cummings Hamiltonian [48], 

Hjc = hcoh+h + hcoS+6 + hgo(h~ + + h+8). (25) 

Here we consider a two-level atom and co is the common resonance 
frequency of both atom and cavity. Diagonalizing this Hamiltonian gives 
rise to the well-known Jaynes-Cummings ladder of eigenstates for the 
coupled atom-cavity system, as illustrated in Fig. 18. The coupled 
eigenstates are characterized by the equal sharing of excitation between 
the atomic dipole and cavity field, so that the n-excitation bare states Ig, n} 
and le, n -  1) of energy nhco are replaced by 

1 
14-'> -- ~ (Ig, n} -t-le, n - 1)), (26) 

Ig,3},le,2} 

Ig,2},le,1} 

Ig,]},le,0} 

(L )  ' r 

i 

(.D I r  
A L  

<'.]i"+ ,f3hgo 

. . . . ," 

<2 / + 9t-2hgo; 

1+3) 
I--3) 
1+2} 

I-2} 

I-l) 
]g,0 o3 

} / / / / / / / / / / / / / / / / / /  

] unc~ I [ coupled  

FIG. 18. Jaynes-Cummings ladder of eigenstates for the coupled atom-cavity system. Bare 
eigenstates of the atom and cavity field are shown on the left, labeled by atomic internal state 
and number of photons in the cavity mode, under the condition COc = coa = co. When the atomic 
dipole is coupled to the cavity field with single-photon Rabi frequency 2g0, the energy 
eigenstates form the ladder shown on the right. The Jaynes-Cummings ladder has pairs of 
strong- and weak-field-seeking states with each pair split by an energy that rises as the square 
root of the number of excitations. 
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monicity, and the realization of strong coupling to the trans-
mission line resonator. In addition, the dispersive regime of
the coupled system is described by an ac Stark shift Hamil-
tonian in complete analogy to the regular CPB, allowing for
the transfer of control and readout protocols from the CPB to
the transmon system.

The effort to reduce the noise susceptibility in solid-state
qubits based on Josephson junctions has led to a variety of
different qubit types. Usually, these designs achieve a noise
suppression in one particular channel, oftentimes accompa-
nied by a tradeoff with respect to noise in other channels.
Flux qubits !10,11" operate at EJ /EC ratios similar to those of
the transmon, i.e., EJ /EC#102–103. Accordingly, flux qubits
reach an insensitivity to charge noise comparable to the
transmon. However, flux qubits will typically show a signifi-
cantly larger susceptibility to flux noise, especially when op-
erated away from the flux sweet spot. Phase qubits !12" trade
in a slight increase in critical-current noise sensitivity for a
drastic suppression of charge noise. Recent devices using
inductive coupling to establish a current bias !17" may also
face increased flux sensitivity.

Remarkably, the transmon achieves its exponential insen-
sitivity to 1/ f charge noise without incurring a penalty in the
form of increased sensitivity to either flux or critical-current
noise. This advantage can be illustrated by comparing the
transmon to the traditional CPB, as shown in Table I. As
discussed above, the transmon is in fact comparatively less
sensitive to flux and critical-current noise than the CPB. In
fact, even without any reduction in the canonical 1 / f noise
intensities, we predict that a transmon qubit operated at the
flux sweet spot should be limited only by the effects of re-
laxation. In conclusion, we are confident that the transmon
will belong to a new generation of superconducting qubits
with significantly improved coherence times and scalability.
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APPENDIX A: FULL NETWORK ANALYSIS

For completeness, we describe the modeling of the trans-
mon device starting from an analysis of the full capacitance
network !56". This network is depicted in Fig. 12$a%. It is
based on the capacitances between the various conducting
islands, see Fig. 12$b%. For a minimal model, we take into
account the two ground planes and center pin of the trans-
mission line resonator as well as the two islands connected
through the Josephson junctions. In the actual device, the dc

bias is supplied via an additional capacitance to the center
pin. For simplicity, we restrict our network to five islands in
Fig. 12, considering only the effective voltage V between
bottom ground plane and center pin.

By Thévenin’s theorem, any single-port linear network of
impedances and voltage sources can be substituted by an
equivalent circuit consisting of one voltage source V! and
one impedance. In our particular case it is useful to retain the
original gate voltage source Vg in the equivalent circuit. This
can be accomplished by allowing for one additional imped-
ance, as shown in Fig. 12$c%. The two effective capacitances
can be interpreted as an effective gate capacitance Cg and an
effective shunting capacitance CB. Together, they adjust for
the correct voltage seen from the Josephson-junction port via
the parameter !=Vab /Vg=Cg /C" and the total capacitance
C"=CB+Cg+CJ between the nodes a and b; see Fig. 12$c%.
$In the following, we absorb the junction capacitance into
CB.%

The parameters ! and C" are extracted from the full ca-
pacitance network as follows. Each conducting island, enu-
merated by i=1, . . . ,n, is associated with a certain charge Qi
and a potential #i $with respect to infinity%. These obey the
linear relation Qi=& jCij# j. For each island, we know either
its charge or its potential. Let us choose the island enumera-
tion such that for islands i$ i0, the charges Qi

* are known,
whereas for i% i0 the potentials #i

* are known. $Here, the
additional star signals that the quantity is known.% We thus
have the following system of linear equations:

Qi
* = &

j$i0

Cij# j + &
j%i0

Cij# j
* for i $ i0, $A1%

Qi = &
j$i0

Cij# j + &
j%i0

Cij# j
* for i % i0, $A2%

from which we can determine the unknown quantities
#1 , . . . ,#i0

,Qi0+1 , . . . ,Qn. With the solution, we can immedi-

FIG. 12. $Color online% $a% Full capacitance network for the
transmon device. $b% Simplified schematic of the transmon device
design $not to scale%. $c% Reduced network.
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 Anharmonic oscillator

Ĥ = 4EC n̂
2 � EJ cos '̂

L̂z= !r!p" ·ez=−i" !
!# , so that the rotor’s Hamiltonian reads

Hrot =
L̂z

2

2ml2 − mgl cos # . !2.6"

Identifying the !integer-valued" number operator for Cooper
pairs with the angular momentum of the rotor, n̂↔ L̂z /", and
relating EJ↔mgl, EC↔ !"2 /8ml2", one finds that the rotor
Hamiltonian is identical to the transmon Hamiltonian with
ng=0.

To capture the case of a nonzero offset charge, we imag-
ine that the mass also carries an electrical charge q and
moves in a homogeneous magnetic field with strength B0 in z
direction. Representing the magnetic field by the vector po-
tential A=B0!−y ,x ,0" /2 !symmetric gauge" and noting that
the vector potential enters the Hamiltonian according to

p → p − qA ⇒ Lz → Lz + 1
2qB0l2, !2.7"

one finds that the offset charge ng can be identified with
qB0l2 /2". This establishes a one-to-one mapping between
the transmon system and the charged quantum rotor in a
constant magnetic field. We emphasize that for the transmon
!and CPB" the island charge is well defined so that n̂ has
discrete eigenvalues and # is a compact variable leading to
$!#"=$!#+2%". In the rotor picture, this corresponds to the

fact that the eigenvalues of the angular momentum L̂z are
discrete and that the “positions” # and #+2% are identical. It
is important to note that this mapping is different from the
tilted washboard model used within the context of resistively
shunted junctions, see, e.g., #27$, and must not be confused
with this case.

In the transmon regime, i.e., large EJ /EC, the dynamics of
the rotor is dominated by the strong gravitational field. Ac-
cordingly, small oscillation amplitudes around #=0 are fa-
vored; see Fig. 3. Perturbation theory for small angles imme-

diately leads to an anharmonic oscillator with quartic
perturbation !Duffing oscillator". !This method will be em-
ployed in Sec. II C to obtain the leading-order anharmonicity
corrections." However, the charge dispersion &m cannot be
captured in such a perturbative picture. Within the perturba-
tive approach !at any finite order" the # periodicity is lost
and the angular variable becomes noncompact, −' (#('.
Now, in the absence of the boundary condition $!#+2%"
=$!#" the vector potential can be eliminated by a gauge
transformation. In other words, the effect of the offset charge
ng only enters through the rare event of a full 2% rotation, in
which case the system picks up an Aharonov-Bohm-type
phase. This corresponds to “instanton” tunneling events
through the cosine potential barrier to adjacent wells, and
explains the WKB-type exponential decrease of the charge
dispersion. It is interesting to note that the nonvanishing
charge dispersion is truly a nonperturbative quantum effect,
which can be ascribed to the discreteness of charge or
equivalently to the peculiar role of the vector potential in
quantum mechanics leading to the Aharonov-Bohm effect.

The comparison between the exact result for the charge
dispersion and the asymptotic expansion is depicted in Fig.
4!a". The requirements on the largeness of EJ /EC are seen to
become stricter for increasing level index. For the transmon,
we will mainly focus on the lowest two levels, for which Eq.
!2.5" constitutes a very good approximation when EJ /EC
)20. Asymptotically, the differential charge dispersion
!E01/!ng is dominated by the contribution from the first ex-
cited level, so that from Eqs. !2.3" and !2.5" we have

FIG. 3. !Color online" !a" Rotor analogy for the transmon. The
transmon Hamiltonian can be understood as a charged quantum
rotor in a constant magnetic field %ng. For large EJ /EC, there is a
significant “gravitational” pull on the pendulum and the system
typically remains in the vicinity of #=0. Only tunneling events
between adjacent cosine wells !i.e., a full 2% rotor movement" will
acquire an Aharonov-Bohm-type phase due to ng. The tunneling
probability decreases exponentially with EJ /EC, explaining the ex-
ponential decrease of the charge dispersion. !b" Cosine potential
!black solid line" with corresponding eigenenergies and squared
moduli of the eigenfunctions.

FIG. 4. !Color online" Comparison of numerically exact and
asymptotic expressions for the charge dispersion and energy levels.
!a" Charge dispersion &&m& as a function of the ratio EJ /EC for the
lowest four levels. The solid curves depict the exact results using
Mathieu characteristic values, the dashed curves represent the
asymptotic expansion, Eq. !2.5". The right vertical scale gives the
charge dispersion in MHz for a transition frequency of 7 GHz. !b"
Energy level difference E0m=Em−E0 at ng=1/2 as a function of the
EJ /EC ratio. Solid curves show the exact results; dashed lines are
based on the asymptotic expression !2.11". The vertical scale on the
right-hand side gives the transition frequencies from the ground
state to level m in GHz, assuming a charging energy of EC /h
=0.35 GHz. All numerical data are obtained for ng=1/2.
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Photon-Mediated	Interac0ons

Photon-mediated interactions
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Photonic	Crystal	+	qubits	

• Effective swap interaction 
• All modes in parallel

1D-Photonic	Crystal

as seen in Figs. 1(e), 1(f), and Appendix D. We note that the
transmission dip observed in Figs. 1(e) and 1(f) is due to the
reflection from the transmon qubit [22–24]. State localiza-
tion is tunable in situ with frequency through a range
determined by device parameters, including transmon
qubit-waveguide coupling and band curvature. Compared
with previous work, we attain increased localization in this
device [Fig. 1(b)] due mainly to a flatter band dispersion,
realized by tailoring the unit cell of the photonic crystal (see
Appendix A for a detailed discussion of the experimental
parameters of our system). The bound-state localization
length in this device is still widely tunable, which is critical
for realizing strong, tunable interaction between spatially
separated bound states. As the different coupling regimes
translate to dramatically altered system behavior [7], it is
important to determinewhich domain our system falls under.
In systems such as the one presented here, qubit emission
into the waveguide being larger than the other decay rates
(coherent atom-photon interaction rates larger than decay
rates) is the minimal coupling criterion, upon which the
dressed bound statewithin the gap can be spectrally resolved
[7]. The strong coupling criterion corresponds to the
situation where a bare qubit resonant with the band edge
gives rise to a bound state that is shifted from the band edge

bymore than the bound state’s linewidth [7,13]. In our finite
system, we observe an approximately 250-MHz separation
between the bound state and the band edgewith bound-state
linewidth of 4 MHz when a qubit is resonant with the band
edge, thus firmly reaching the strong coupling condition [see
Figs. 1(b), 1(e), and 1(f)]. By fabricating two transmon
qubits in the photonic crystal [see Fig. 1(a) and Appendix B
for a discussion on coupling transmons to photonic crystals],
we realize multiple, spectrally resolvable bound states and
can study interbound-state interaction.
The nature of interbound-state interaction makes this

platform intrinsically well suited for investigating one-
dimensional chains of bound states [see Fig. 1(c)]. Realizing
sizable chains is possible by increasing the number of unit
cells—a property that does not impact the Bloch mode
distribution or band dispersion. Thus, qubits can be in
separate unit cells but realize nearly identical coupling to
the band edge. As the strength of interbound-state interaction
depends on the spatial overlap of the photonicwave functions
with the qubits, the distance separating qubits (set by device
design) is directlymapped into the interactions of the system,
maintaining the chainlike interaction pattern. Furthermore,
in the investigation of bound states, the finite size of the
crystal is a practical advantage: the overlaps of bound states
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FIG. 1. A platform for interacting dressed bound states.—(a) A 16-site microwave photonic crystal is realized by alternating sections
of high and low impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy ladder) are in neighboring unit
cells in the middle of the device, centered in the high impedance sections for maximal coupling to the band edge at 7.8 GHz [all values
presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
band-edge frequency. Each transmon is individually tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect
measure of localization, varies with bare transmon qubit frequency. The wide range over which photon localization can be tuned
indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.
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•Exponen0ally	localized	bound	state

as seen in Figs. 1(e), 1(f), and Appendix D. We note that the
transmission dip observed in Figs. 1(e) and 1(f) is due to the
reflection from the transmon qubit [22–24]. State localiza-
tion is tunable in situ with frequency through a range
determined by device parameters, including transmon
qubit-waveguide coupling and band curvature. Compared
with previous work, we attain increased localization in this
device [Fig. 1(b)] due mainly to a flatter band dispersion,
realized by tailoring the unit cell of the photonic crystal (see
Appendix A for a detailed discussion of the experimental
parameters of our system). The bound-state localization
length in this device is still widely tunable, which is critical
for realizing strong, tunable interaction between spatially
separated bound states. As the different coupling regimes
translate to dramatically altered system behavior [7], it is
important to determinewhich domain our system falls under.
In systems such as the one presented here, qubit emission
into the waveguide being larger than the other decay rates
(coherent atom-photon interaction rates larger than decay
rates) is the minimal coupling criterion, upon which the
dressed bound statewithin the gap can be spectrally resolved
[7]. The strong coupling criterion corresponds to the
situation where a bare qubit resonant with the band edge
gives rise to a bound state that is shifted from the band edge

bymore than the bound state’s linewidth [7,13]. In our finite
system, we observe an approximately 250-MHz separation
between the bound state and the band edgewith bound-state
linewidth of 4 MHz when a qubit is resonant with the band
edge, thus firmly reaching the strong coupling condition [see
Figs. 1(b), 1(e), and 1(f)]. By fabricating two transmon
qubits in the photonic crystal [see Fig. 1(a) and Appendix B
for a discussion on coupling transmons to photonic crystals],
we realize multiple, spectrally resolvable bound states and
can study interbound-state interaction.
The nature of interbound-state interaction makes this

platform intrinsically well suited for investigating one-
dimensional chains of bound states [see Fig. 1(c)]. Realizing
sizable chains is possible by increasing the number of unit
cells—a property that does not impact the Bloch mode
distribution or band dispersion. Thus, qubits can be in
separate unit cells but realize nearly identical coupling to
the band edge. As the strength of interbound-state interaction
depends on the spatial overlap of the photonicwave functions
with the qubits, the distance separating qubits (set by device
design) is directlymapped into the interactions of the system,
maintaining the chainlike interaction pattern. Furthermore,
in the investigation of bound states, the finite size of the
crystal is a practical advantage: the overlaps of bound states
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FIG. 1. A platform for interacting dressed bound states.—(a) A 16-site microwave photonic crystal is realized by alternating sections
of high and low impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy ladder) are in neighboring unit
cells in the middle of the device, centered in the high impedance sections for maximal coupling to the band edge at 7.8 GHz [all values
presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
band-edge frequency. Each transmon is individually tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect
measure of localization, varies with bare transmon qubit frequency. The wide range over which photon localization can be tuned
indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.
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crystal, is smaller. However, because the band edge is not at
zero momentum in our system, it turns out the symmetric
state is actually dimmed and has a smaller linewidth, as we
prove in Appendix D 2. In Fig. 3(e), we see that the bound
states at the same transmission frequency (with different
bare qubit frequencies) have drastically different linewidths
with the higher-frequency bound state having a smaller
linewidth, consistent with our numerical simulations
[Figs. 3(f) and 8(d)]. This provides some indirect exper-
imental evidence that the qubit part of the higher (lower)
frequency bound-state wave function is indeed symmetric
(antisymmetric).
To further study tunable on-site interaction, we

probe the interacting bound states beyond the one-
excitation manifold using spectroscopic measurements
[see Fig. 4(a)]. Similar to spectroscopy of qubits in
cavities, we can use transmission at the band edge to help
detect bound-state transitions, a technique that provides
sharper contrast compared to transmission measurement

for the more highly localized bound states and allows
detection of higher-dressed transitions, such as the
transition between j0i and j2i driven by two photons
of frequency ω02=2.
With this technique we detect interaction between j02i,

j20i, and j11i of the coupled bound states, observed as
avoided level crossings. In addition to the single-photon
exchange interaction between j02i (j20i) and j11i [26],
remarkably we measure the two-photon virtual interaction
between j20i and j02i, despite the fact that this process is
fourth order in coupling g (see Appendix F 2). This two-
photon interaction shows consistent dependence on detun-
ing: increasing in strength (from 0MHz to over 10 MHz) as
the bound states shift towards the band edge and the states
become more delocalized [see inset of Fig. 4(a)].
Numerical simulations [Fig. 4(b)] are consistent with
experimental data and capture the relative magnitudes of
interaction between levels as well as frequency dependence
on coupling strengths. Observation of this small interaction
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FIG. 3. Interacting bound states.—Interaction between bound states is characterized by the avoided crossing (observed in S21
measurement) that arises while tuning one qubit (y axis) through resonance with the other (fixed). (a) An avoided crossing of 240 MHz is
observed when the fixed qubit is at 7.73 GHz. The two points where transmission amplitude of a bound state dims are understood as the
bound-state peak being resonant with the qubit frequency. (a), inset—Hopping model simulation of the one-excitation manifold is
consistent with experimental observation. The lamb shift in the hopping model originates from next-nearest-neighbor interaction
between coupled cavities. (b),(c),(d) Tunable bound-state interaction strength is illustrated in example bound-state avoided level
crossings for a fixed qubit whose bare frequency is circa 6.125, 6.75, and 7.625 GHz. As qubits are detuned further from the band edge,
bound states are more tightly localized, reducing overlap and thus reducing interaction. (e),(f) Transmission when the qubits are on
resonance across a range of qubit frequencies in the experiment and the simulation, respectively. The uneven linewidths of the two
bound states when they occur at the same frequency suggest they are symmetric (higher-frequency bound state) and antisymmetric
(lower-frequency bound state) states (see main text). (g) Bound-state avoided crossing and qubit population (from simulation) as a
function of average bound-state frequency. A steady reduction in interaction strength occurs with increasing detuning from the band
edge (moving deeper into the band gap) due to increasing localization of the bound states. Hopping model simulation (black) captures
this detuning-dependent behavior observed in experiment (red). Near the band edge, both bound states (blue and cyan) have a significant
photonic contribution.

INTERACTING QUBIT-PHOTON BOUND STATES WITH … PHYS. REV. X 9, 011021 (2019)
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Photon-Mediated	Avoided	Crossing

New	Regimes:	

• New lattices 
• Different coupling scheme

Ferreira	et	al.	arXiv	2001.0324	(2020)



CPW	La6ces

• Capacitive coupling of resonators  

• Tight-binding solid 

• t < 0

HTB = !0

X

i

a
†
iai � t

X

<i,j>

(a†iaj + a
†
jai)

Underwood	et	al.	PRA	86,	023837	(2012)
Houck	et	al.	Nat	Phys	8,	(2012)



Deformable	Resonators

• Frequency depends only on length 

• Coupling depends on ends  

•“Bendable”



Hyperbolic	La6ce

Kollár	et	al.	Nature	571	(2019)



Layout	and	Effec0ve	La6ces

Resonator	La6ce Effec0ve	Photonic	La6ce

• An edge on each resonator • A vertex on each resonator
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Line-Graph	Flat	Bands
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Subdivision	Graphs	and	Op0mally	Gapped	Flat	Bands
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Subdivision	Graphs	and	Op0mally	Gapped	Flat	Bands
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New	La6ces	for	Photon-Mediated	Interac0ons

•Follows	hyperbolic	metric

Hyperbolic	LaFce

2

FIG. 1. (a) Single-excitation single-qubit bound-state. Red
square denotes the position of the qubit. (b) Comparison
between discrete and continuous Green’s function. We see
that already the nearest neighbour photonic component is
well described by the continuum limit. (c-d) Density of the
photonic component of a two-spin bound state illustrating the
photon-mediated interactions between spins.

System.—We study photons on the hyperbolic lattice
G coupled to qubits, where photon dynamics is modelled
by a tight-binding Hamiltonian and qubits at positions i
corresponds to local spin-1/2 operators �+

i �
�
i = |1ih1|i.

The full Hamiltonian in rotating wave approximation is
given by

H = �
X

i2S
|1ih1|i + g

X

j2S

⇣
�
+
j aj + h.c.

⌘
+Hph, (1)

Hph = �t

X

<ij>2G
(a†iaj + h.c.) +

X

j2G
!ra

†
jaj (2)

with a
†
i the photon creation operator and g the coupling

between photons and qubits. The set S comprises the
qubit sites and G the hyperbolic lattice. For concreteness
we assume t > 0 in the following.

The coupling of a single qubit to the photonic bath
results in a dressing or renormalization of �. The single-
excitation bound state energy EB for a photon coupled
to a single qubit at position i is given by the solution of

EB = �+ g
2
Gii(EB), (3)

where Gij(!) = (! � Hph)
�1
ij is the photon Green func-

tion.4 Denote the lowest eigenvalue of Hph by E0 < 0,

4[Di↵erent sign of Gij as in previous paper.]

which defines the lower edge of the photon spectrum.
Equation (3) always permits a solution EB < �. In par-
ticular, for weak coupling, we find EB ⇡ � + g

2
Gii(�)

and the bound state wave-function consists mostly of the
spin component:[TODO: I think that G are in consistent
notation so we don’t need the ”-”]

| Bi ⇡ |", 0i+ g

X

j2G
Gij(�)a†j |#, 0i . (4)

This corresponds to a qubit coupled to a structured bath.
In the low-energy regime, we can describe the photonic

part of the system using the continuum limit, where the
hyperbolic lattice is mapped to the Poincaré disk with
radius L  1 and curvature radius R = 1

2 . The condition
for the bound state in the continuum is given by Eq. (3)
with the continuum approximation of the photon Green
function G(z, z0, !̄) given by

Gij(!) ⇡ �G(zi, zj , !̄), (5)

where !̄ = M(!+3), and M = 4
3h2 is e↵ective band mass

of the photons PB: “!k = E0 + k2/M and gk = g
q

⇡
28 K(z)

with  K(z) the eigenfunctions of the Laplacian”. For large lat-
tices we have L ! 1 and the photon spectrum becomes
continuous and reads 1

M (1 + k
2). The bound state con-

dition becomes

EB = �+ g
2 ⇡

28

ˆ
k⇤

d2k

(2⇡)2
tanh(⇡k/2)

EB + 3� 1
M (1 + k2)

.

The tanh-term in the measure is due to the negative
curvature of space. Importantly, the continuum de-
scription requires the introduction of a short-distance
cuto↵ ⇤ / h

�1, because G(z, z0, !̄) is not defined for
z = z

0. This is a well-known property of bound states
for parabolic bands in two dimensions. The value of ⇤
can be fixed through the renormalization condition C :=
G11(�3t) = G(z1, z1, 0), yielding ⇤ ' e

56C/M ' 3h�1.
For ⇤ �

p
M , Eq. (3) becomes

EB �� ' g
2 ⇡

28

M

4⇡
ln
⇣ |EB � E0|M

⇤2

⌘
. (6)

The bound state wavefunction is

| Bi /
⇣
�
+
1 �
ˆ

d2z

(1� |z|2)2u(z)a
†(z)

⌘
|#, 0i (7)

with u(z) = Mg̃G(z, zi, !̄B). In Fig. 1(b) we show the
amplitude of the photonic component |u(z)|2 [TODO:
right?] of the bound state wave function in Eq. (4)
using both the discrete and continuum expressions, which
agree very well.
Note that, even though boundary e↵ects make the con-

tinuum limit of the DOS nuanced, the bound states for
spins away from the edge are localized in the bulk and
therefore the results are no influenced by the edge e↵ects.

Bienieas,	AJK	et	al.	In	Prep	(2021)

•Frustrated	Magnet

Flat-Band	LaFce

AJK	et	al.	Comm.	Math.	Phys.	376,	1909	(2020)	

AJK	et	al.	Nature	571	(2019)



Raman-Coupled	Spin	Models

Douglas	et	al.	Nat.	Photon.	9	(2015)
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• Microwave-activated coupling 

• Two relevant detunings 

• Effective swap interaction

1D-Photonic	Crystal	+	Single	Drive

as seen in Figs. 1(e), 1(f), and Appendix D. We note that the
transmission dip observed in Figs. 1(e) and 1(f) is due to the
reflection from the transmon qubit [22–24]. State localiza-
tion is tunable in situ with frequency through a range
determined by device parameters, including transmon
qubit-waveguide coupling and band curvature. Compared
with previous work, we attain increased localization in this
device [Fig. 1(b)] due mainly to a flatter band dispersion,
realized by tailoring the unit cell of the photonic crystal (see
Appendix A for a detailed discussion of the experimental
parameters of our system). The bound-state localization
length in this device is still widely tunable, which is critical
for realizing strong, tunable interaction between spatially
separated bound states. As the different coupling regimes
translate to dramatically altered system behavior [7], it is
important to determinewhich domain our system falls under.
In systems such as the one presented here, qubit emission
into the waveguide being larger than the other decay rates
(coherent atom-photon interaction rates larger than decay
rates) is the minimal coupling criterion, upon which the
dressed bound statewithin the gap can be spectrally resolved
[7]. The strong coupling criterion corresponds to the
situation where a bare qubit resonant with the band edge
gives rise to a bound state that is shifted from the band edge

bymore than the bound state’s linewidth [7,13]. In our finite
system, we observe an approximately 250-MHz separation
between the bound state and the band edgewith bound-state
linewidth of 4 MHz when a qubit is resonant with the band
edge, thus firmly reaching the strong coupling condition [see
Figs. 1(b), 1(e), and 1(f)]. By fabricating two transmon
qubits in the photonic crystal [see Fig. 1(a) and Appendix B
for a discussion on coupling transmons to photonic crystals],
we realize multiple, spectrally resolvable bound states and
can study interbound-state interaction.
The nature of interbound-state interaction makes this

platform intrinsically well suited for investigating one-
dimensional chains of bound states [see Fig. 1(c)]. Realizing
sizable chains is possible by increasing the number of unit
cells—a property that does not impact the Bloch mode
distribution or band dispersion. Thus, qubits can be in
separate unit cells but realize nearly identical coupling to
the band edge. As the strength of interbound-state interaction
depends on the spatial overlap of the photonicwave functions
with the qubits, the distance separating qubits (set by device
design) is directlymapped into the interactions of the system,
maintaining the chainlike interaction pattern. Furthermore,
in the investigation of bound states, the finite size of the
crystal is a practical advantage: the overlaps of bound states
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FIG. 1. A platform for interacting dressed bound states.—(a) A 16-site microwave photonic crystal is realized by alternating sections
of high and low impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy ladder) are in neighboring unit
cells in the middle of the device, centered in the high impedance sections for maximal coupling to the band edge at 7.8 GHz [all values
presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
band-edge frequency. Each transmon is individually tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect
measure of localization, varies with bare transmon qubit frequency. The wide range over which photon localization can be tuned
indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.

NEEREJA M. SUNDARESAN et al. PHYS. REV. X 9, 011021 (2019)

011021-2

• Exponentially localized interaction

• Superposition of exponentials

1D-Photonic	Crystal	+	MulOple	Drives

• Approximate power-law interaction

Need	3-level	qubit

Fluxonium



Fluxonium
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Raman	Transi0ons	in	Fluxonium
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Second-Genera0on	Raman	Device

• 3-cavi0es	

• Separate	resonators	allow	
• Op0mized	readout	
• Parallel	readout	and	coupling
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Conclusion	and	Outlook

• Outlook	

• Spin	models	in	curved	spaces	

• Frustrated	interac0ons	in	flat	bands

Kollár	et	al.	Nature	571	(2019)
Kollár	et	al.	Comm.	Math.	Phys.	376,	1909	(2020)	

• Circuit	QED	la6ces	

• Photon-mediated	

interac0ons	

• Lithographic	control	

• Hyperbolic	la6ces	

• Flat-band	la6ces	

Boekcher	et	al.	Phys.	Rev.	A	102,	032208	(2020)
Kollár	et	al.	arXiv:2005.05379	(2020)	

2

FIG. 1. (a) Single-excitation single-qubit bound-state. Red
square denotes the position of the qubit. (b) Comparison
between discrete and continuous Green’s function. We see
that already the nearest neighbour photonic component is
well described by the continuum limit. (c-d) Density of the
photonic component of a two-spin bound state illustrating the
photon-mediated interactions between spins.

System.—We study photons on the hyperbolic lattice
G coupled to qubits, where photon dynamics is modelled
by a tight-binding Hamiltonian and qubits at positions i
corresponds to local spin-1/2 operators �+

i �
�
i = |1ih1|i.

The full Hamiltonian in rotating wave approximation is
given by

H = �
X

i2S
|1ih1|i + g

X

j2S

⇣
�
+
j aj + h.c.

⌘
+Hph, (1)

Hph = �t

X

<ij>2G
(a†iaj + h.c.) +

X

j2G
!ra

†
jaj (2)

with a
†
i the photon creation operator and g the coupling

between photons and qubits. The set S comprises the
qubit sites and G the hyperbolic lattice. For concreteness
we assume t > 0 in the following.

The coupling of a single qubit to the photonic bath
results in a dressing or renormalization of �. The single-
excitation bound state energy EB for a photon coupled
to a single qubit at position i is given by the solution of

EB = �+ g
2
Gii(EB), (3)

where Gij(!) = (! � Hph)
�1
ij is the photon Green func-

tion.4 Denote the lowest eigenvalue of Hph by E0 < 0,

4[Di↵erent sign of Gij as in previous paper.]

which defines the lower edge of the photon spectrum.
Equation (3) always permits a solution EB < �. In par-
ticular, for weak coupling, we find EB ⇡ � + g

2
Gii(�)

and the bound state wave-function consists mostly of the
spin component:[TODO: I think that G are in consistent
notation so we don’t need the ”-”]

| Bi ⇡ |", 0i+ g

X

j2G
Gij(�)a†j |#, 0i . (4)

This corresponds to a qubit coupled to a structured bath.
In the low-energy regime, we can describe the photonic

part of the system using the continuum limit, where the
hyperbolic lattice is mapped to the Poincaré disk with
radius L  1 and curvature radius R = 1

2 . The condition
for the bound state in the continuum is given by Eq. (3)
with the continuum approximation of the photon Green
function G(z, z0, !̄) given by

Gij(!) ⇡ �G(zi, zj , !̄), (5)

where !̄ = M(!+3), and M = 4
3h2 is e↵ective band mass

of the photons PB: “!k = E0 + k2/M and gk = g
q

⇡
28 K(z)

with  K(z) the eigenfunctions of the Laplacian”. For large lat-
tices we have L ! 1 and the photon spectrum becomes
continuous and reads 1

M (1 + k
2). The bound state con-

dition becomes

EB = �+ g
2 ⇡

28

ˆ
k⇤

d2k

(2⇡)2
tanh(⇡k/2)

EB + 3� 1
M (1 + k2)

.

The tanh-term in the measure is due to the negative
curvature of space. Importantly, the continuum de-
scription requires the introduction of a short-distance
cuto↵ ⇤ / h

�1, because G(z, z0, !̄) is not defined for
z = z

0. This is a well-known property of bound states
for parabolic bands in two dimensions. The value of ⇤
can be fixed through the renormalization condition C :=
G11(�3t) = G(z1, z1, 0), yielding ⇤ ' e

56C/M ' 3h�1.
For ⇤ �

p
M , Eq. (3) becomes

EB �� ' g
2 ⇡

28

M

4⇡
ln
⇣ |EB � E0|M

⇤2

⌘
. (6)

The bound state wavefunction is

| Bi /
⇣
�
+
1 �
ˆ

d2z

(1� |z|2)2u(z)a
†(z)

⌘
|#, 0i (7)

with u(z) = Mg̃G(z, zi, !̄B). In Fig. 1(b) we show the
amplitude of the photonic component |u(z)|2 [TODO:
right?] of the bound state wave function in Eq. (4)
using both the discrete and continuum expressions, which
agree very well.
Note that, even though boundary e↵ects make the con-

tinuum limit of the DOS nuanced, the bound states for
spins away from the edge are localized in the bulk and
therefore the results are no influenced by the edge e↵ects.
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