Engineering Qubit-Qubit Interactions in Circuit QED Lattices

Alicia Kollár

Department of Physics and JQI, University of Maryland

SPICE, May 5, 2021

Microwave Coplanar Waveguide Resonators

- 2D analog of coaxial cable
- Cavity defined by cutting center pin
- Voltage antinode at "mirror"

Tom concorrence co

Harmonic oscillator

$$\hat{H} = \frac{1}{2C}\hat{n}^2 + \frac{1}{2L}\hat{\varphi}^2$$

Blais et al., PRA 69, 062320 (2014)

Transmon Qubit

Anharmonic oscillator $\hat{H} = 4E_C \,\hat{n}^2 - E_J \cos\hat{\varphi}$

Qubit-Cavity

(Jaynes-Cummings Model)

$$H_{JC} = \omega_c a^{\dagger} a + \frac{1}{2} \omega_q \sigma_z + g_0 (a^{\dagger} \sigma^- + a \sigma^+)$$

$$|\pm_n\rangle = \frac{1}{\sqrt{2}}(|g,n\rangle \pm |e,n-1\rangle),$$

Ye et al. Advances in AMO Physics 49 (2003)

Koch et al. PRA 76, 042319 (2007)

Photon-Mediated Interactions

Photonic Crystal + qubits

- Effective swap interaction
- All modes in parallel

$$H = \hbar \ \sigma_1^+ \sigma_2^- \ \sum_m \frac{g_m^2}{\Delta(m)} \ \psi_m(x_1) \psi_m^*(x_2) + h.c.$$

1D-Photonic Crystal

• Exponentially localized bound state

Photon-Mediated Avoided Crossing

New Regimes:

- New lattices
- Different coupling scheme

Douglas *et al.* Nat. Photon. (2015) Calajó *et al.* PRA (2016) Liu *et al.* Nature Physics (2016) Sundaresan *et al.* PRX (2019) Ferreira *et al.* arXiv 2001.0324 (2020)

CPW Lattices

Underwood et al. PRA 86, 023837 (2012)

Deformable Resonators

- Frequency depends only on length
- Coupling depends on ends
- "Bendable"

Hyperbolic Lattice

Layout and Effective Lattices

Resonator Lattice

• An *edge* on each resonator

Layout X

Effective Photonic Lattice

• A vertex on each resonator

Line Graph
$$L(X)$$

Line-Graph Flat Bands

Subdivision Graphs and Optimally Gapped Flat Bands

Subdivision Graphs and Optimally Gapped Flat Bands

New Lattices for Photon-Mediated Interactions

AK et al. Nature 571 (2019) Bienieas, AJK et al. In Prep (2021)

Flat-Band Lattice

• Frustrated Magnet

AJK et al. Comm. Math. Phys. 376, 1909 (2020)

Raman-Coupled Spin Models

- Microwave-activated coupling
- Two relevant detunings
- Effective swap interaction

$$H_{Raman} = \hbar \frac{g^2 \Omega^2}{\Delta^2 \delta} \ \sigma_1^+ \sigma_2^- + h.c.$$

1D-Photonic Crystal + Single Drive

Exponentially localized interaction

1D-Photonic Crystal + Multiple Drives

- Superposition of exponentials
- Approximate power-law interaction

Need 3-level qubit

Fluxonium

Manucharyan et al. Science 326 (2009)

Raman Transitions in Fluxonium

Rabi oscillation

- Gaussian pulse off-resonant of plasmon
- Vacuum Rabi rate of fluxon

Second-Generation Raman Device

Redesigned Device

- 3-cavities
- Separate resonators allow
 - Optimized readout
 - Parallel readout and coupling

Conclusion and Outlook

- Circuit QED lattices
 - Photon-mediated interactions
 - Lithographic control
- Hyperbolic lattices
- Flat-band lattices

Outlook

- Spin models in curved spaces
- Frustrated interactions in flat bands

Kollár *et al.* Nature **571** (2019) Kollár *et al.* Comm. Math. Phys. **376**, 1909 (2020) Kollár *et al.* arXiv:2005.05379 (2020) Boettcher *et al.* Phys. Rev. A **102**, 032208 (2020)

Engineering Qubit-Qubit Interactions in Circuit QED Lattices

