

Max Planck Research Group

Theory of hybrid quantum systems

Anna-Luisa Römling

Vanessa Wachter

Hybrid quantum systems based on magnetic elements

Zhang et. al Science Advances 2016

Osada et. al PRL 116 2016

Hybrid quantum systems based on magnetic elements

Zhang et. al Science Advances 2016

Osada et. al PRL 116 2016

Optomagnonics

Cavity Optomagnonics

cavity-enhanced spin-photon interaction

Cavity Optomagnonics

cavity-enhanced spin-photon interaction

dynamical effects: frequency shifts, induced dissipation...

r_z **f [GHz]** 16

Optically induced spin dynamics

SVK, H. X. Tang, and F. Marquardt, PRA 94, 033821 (2016) laser amplitude $\sqrt{G} |\alpha_{\rm max}|^2$

MAX PLANCK INSTITUTE FOR THE SCIENCE OF LIGHT

Coupling to Optics?: Faraday Effect

Coupling to Optics?: Faraday Effect

permittivity $\varepsilon_{ij} (\mathbf{M}) = \varepsilon_0 (\varepsilon \delta_{ij} - i f \epsilon_{ijk} M_k)$ \uparrow broken time-reversal symmetry

Coupling to Optics?: Faraday Effect

permittivity $\varepsilon_{ij} (\mathbf{M}) = \varepsilon_0 (\varepsilon \delta_{ij} - i f \epsilon_{ijk} M_k)$ \uparrow broken time-reversal symmetry

 $\bar{U}_{\rm MO} = \theta_{\rm F} \sqrt{\frac{\varepsilon}{\varepsilon_0}} \int d\mathbf{r} \frac{\mathbf{M}(\mathbf{r})}{M_{\rm s}} \cdot \frac{\varepsilon_0}{2i\omega} \left[\mathbf{E}^*(\mathbf{r}) \times \mathbf{E}(\mathbf{r}) \right]$ magnetization density

Optomagnonic Hamiltonian

$$\bar{U}_{\rm MO} = \theta_{\rm F} \sqrt{\frac{\varepsilon}{\varepsilon_0}} \int d\mathbf{r} \frac{\mathbf{M}(\mathbf{r})}{M_{\rm s}} \cdot \frac{\varepsilon_0}{2i\omega} \left[\mathbf{E}^*(\mathbf{r}) \times \mathbf{E}(\mathbf{r}) \right]$$
Quantize:
$$\hat{\mathbf{S}} \qquad \hat{a}^{\dagger} \qquad \hat{a}$$

two-photon process

Optomagnonic Hamiltonian: Kittel Mode

$$\bar{U}_{MO} = \theta_{F} \sqrt{\frac{\varepsilon}{\varepsilon_{0}}} \int d\mathbf{r} \frac{\mathbf{M}(\mathbf{r})}{M_{s}} \cdot \frac{\varepsilon_{0}}{2i\omega} [\mathbf{E}^{*}(\mathbf{r}) \times \mathbf{E}(\mathbf{r})]$$
Quantize:
$$\hat{\mathbf{S}} \qquad \hat{a}^{\dagger} \qquad \hat{a}$$

$$\widehat{\mathbf{A}} \propto H$$
Kittel mode
$$\widehat{\mathbf{H}}$$

$$\widehat{\mathbf{A}} \sim \operatorname{GHz}$$
for 30mT
$$\widehat{\mathbf{M}} \sim \widehat{\mathbf{M}}$$

Optomagnonic Hamiltonian: Kittel Mode

$$\bar{U}_{MO} = \theta_{F} \sqrt{\frac{\varepsilon}{\varepsilon_{0}}} \int d\mathbf{r} \frac{\mathbf{M}(\mathbf{r})}{M_{s}} \cdot \frac{\varepsilon_{0}}{2i\omega} [\mathbf{E}^{*}(\mathbf{r}) \times \mathbf{E}(\mathbf{r})]$$
Quantize:

$$\hat{\mathbf{S}} \qquad \hat{a}^{\dagger} \qquad \hat{a}$$
Yttrium Iron Garnet (YIG)

$$\mathbf{M} = \mathbf{M} \qquad \mathbf{M} \qquad$$

Cavity Optomagnonics: simple model

Cavity Optomagnonics: simple model

Fast Cavity Limit

Fast cavity limit: integrate out the light field

$$\dot{\mathbf{S}} = \mathbf{B}_{\text{eff}} \times \mathbf{S} + \frac{\eta_{\text{opt}}}{S} \left(\dot{S}_x \, \mathbf{e}_x \times \mathbf{S} \right)$$

Effective Landau-Lifshitz-Gilbert equation of motion

damping

can change sign

effective field

$$\mathbf{B}_{\text{eff}} = -\Omega \mathbf{e}_z + \mathbf{B}_{\text{opt}} \qquad \mathbf{B}_{\text{opt}} = \frac{G}{\left[(\frac{\kappa}{2})^2 + (\Delta - GS_x)^2\right]} \left(\frac{\kappa}{2} \alpha_{\max}\right)^2 \mathbf{e}_x$$
frequency shift

$$\eta_{\text{opt}} = -2G\kappa S \left| \mathbf{B}_{\text{opt}} \right| \frac{(\Delta - GS_x)}{\left[(\frac{\kappa}{2})^2 + (\Delta - GS_x)^2 \right]^2}$$

tunable by the external laser drive

S. Viola Kusminskiy, H. X. Tang, and F. Marquardt, PRA 94, 033821 (2016)

Spin Dynamics: Fast Cavity Limit

y

S. Viola Kusminskiy, H. X. Tang, and F. Marquardt, PRA 94, 033821 (2016)

Spin Dynamics: Fast Cavity Limit

Optically Induced Spin Dynamics

Classical Dynamics

- » Coherent optical control
- » Magnetic switching
- » Self-sustained oscillations
- » Optically induced route to chaos

S. Viola Kusminskiy, H. X. Tang, and F. Marquardt, PRA 94, 033821 (2016)

But...

Problem

the state of the art optomagnonic coupling is small

We have shown that the theoretical limit is much larger SVK, H. X. Tang, and F. Marquardt PRA 94, 033821 (2016)

What we need:

better overlap of modes

smaller systems

Optomagnonic Crystals

J. Graf, S. Sharma, H. Huebl, SVK; Physical Review Research 3, 013277 (2021)

MAX PLANCK INSTITUTE FOR THE SCIENCE OF LIGHT

Vorsitzender des Promotionsausschusses

$$H_{\rm MO} = -i \frac{\theta_{\rm F} \lambda_n}{2\pi} \frac{\varepsilon_0 \varepsilon}{2} \int d\mathbf{r} \, \mathbf{m}(\mathbf{r}, t) \cdot \left[\mathbf{E}^* \left(\mathbf{r}, t \right) \times \mathbf{E} \left(\mathbf{r}, t \right) \right]$$

$$\mathbf{m}(\mathbf{r},t) = \mathbf{m}_0(\mathbf{r}) + \delta \mathbf{m}(\mathbf{r},t)$$

$$H_{\rm MO} = -i \frac{\theta_{\rm F} \lambda_n}{2\pi} \frac{\varepsilon_0 \varepsilon}{2} \int d\mathbf{r} \, \mathbf{m}(\mathbf{r}, t) \cdot \left[\mathbf{E}^* \left(\mathbf{r}, t \right) \times \mathbf{E} \left(\mathbf{r}, t \right) \right]$$

$$\mathbf{m}(\mathbf{r},t) = \mathbf{m}_0(\mathbf{r}) + \delta \mathbf{m}(\mathbf{r},t)$$

Quantize: Holstein Primakoff to first order

$$\delta \mathbf{m}(\mathbf{r},t) \rightarrow \frac{1}{2} \sum_{\substack{\gamma \\ \checkmark}} \left(\delta \mathbf{m}_{\gamma}(\mathbf{r}) \hat{b}_{\gamma} e^{-i\omega_{\gamma}t} + \delta \mathbf{m}_{\gamma}^{*}(\mathbf{r}) \hat{b}_{\gamma}^{\dagger} e^{i\omega_{\gamma}t} \right)$$
magnon mode index bosonic operator mode functions

$$H_{\rm MO} = -i \frac{\theta_{\rm F} \lambda_n}{2\pi} \frac{\varepsilon_0 \varepsilon}{2} \int d\mathbf{r} \, \mathbf{m}(\mathbf{r}, t) \cdot \left[\mathbf{E}^* \left(\mathbf{r}, t \right) \times \mathbf{E} \left(\mathbf{r}, t \right) \right]$$

$$\mathbf{m}(\mathbf{r},t) = \mathbf{m}_0(\mathbf{r}) + \delta \mathbf{m}(\mathbf{r},t)$$

Quantize: Holstein Primakoff to first order

$$\delta \mathbf{m}(\mathbf{r},t) \to \frac{1}{2} \sum_{\gamma} \left(\delta \mathbf{m}_{\gamma}(\mathbf{r}) \hat{b}_{\gamma} e^{-i\omega_{\gamma}t} + \delta \mathbf{m}_{\gamma}^{*}(\mathbf{r}) \hat{b}_{\gamma}^{\dagger} e^{i\omega_{\gamma}t} \right)$$

Quantization of E optical fields

$$\mathbf{E}^{(*)}(\mathbf{r},t) \to \sum_{\beta} \mathbf{E}^{(*)}_{\beta}(\mathbf{r}) \hat{a}^{(\dagger)}_{\beta} e^{-(+)i\omega_{\beta}t}$$

Coupling Hamiltonian in the spin-wave limit

$$\hat{H}_{MO} = \sum_{\alpha\beta\gamma} G_{\alpha\beta\gamma} \hat{a}^{\dagger}_{\alpha} \hat{a}_{\beta} \hat{b}_{\gamma} + \text{h.c.}$$

b

 \hat{a}

G

Optomagnonic coupling

$$G_{\alpha\beta\gamma} = -i\frac{\theta_{\rm F}\lambda_n}{4\pi}\frac{\varepsilon_0\varepsilon}{2}\int d\mathbf{r}\,\delta\mathbf{m}_{\gamma}(\mathbf{r})\cdot\left[\mathbf{E}^*_{\alpha}\left(\mathbf{r}\right)\times\mathbf{E}_{\beta}\left(\mathbf{r}\right)\right]$$

J. Graf, H. Pfeifer, F. Marquardt, S. Viola Kusminskiy, Phys. Rev. B 98, 241406(R), (2018)

Optomagnonic Coupling

Design: towards optimal mode matching

Optics

Match symmetries of magnon mode and optical spin density

Design: towards optimal mode matching

Cavity Optomagnonics with Antiferromagnets

T.S. Parvini, V.A.S.V. Bittencourt, SVK Phys. Rev. Res. 2, 022027(R) (2020)

MAX PLANCK INSTITUTE FOR THE SCIENCE OF LIGHT

Cavity optomagnonics with AFMs

$$\hat{H}_{\rm ph} = \hbar \omega_c \hat{c}^\dagger \hat{c}$$

easy axis anisotropy

$$\hat{H}_{\text{AFM}} = \hbar \sum_{\langle i \neq j \rangle} J \hat{\mathbf{S}}^{i} \cdot \hat{\mathbf{S}}^{j} + \hbar |\gamma| \mathbf{B}_{0} \cdot \sum_{i} \hat{\mathbf{S}}^{i} - \frac{\hbar K_{\parallel}}{2} \sum_{i} \left(\hat{S}_{z}^{i} \right)^{2} + \frac{\hbar K_{\perp}}{2} \sum_{i} \left(\hat{S}_{x}^{i} \right)^{2}$$

hard axis anisotropy

AFMs: Optomagnonic coupling

T.S. Parvini, V.A.S.V. Bittencourt, SVK, Phys. Rev. Res. 2, 022027(R) (2020)

AFMs: Optomagnonic coupling

$$\begin{aligned} \hat{\mathcal{H}}_{\rm OM} &= -\hbar G \hat{c}^{\dagger} \hat{c} (g_{\alpha} \hat{\alpha}^{\dagger} + g_{\beta} \hat{\beta}^{\dagger} + {\rm h.c.}) \\ \textbf{Bogoliubov Factor} \\ \mathbf{g}_{\alpha(\beta)} &= \left(u^{+}_{\alpha(\beta)} + v^{+}_{\alpha(\beta)} \right) + K \left(u^{-}_{\alpha(\beta)} + v^{-}_{\alpha(\beta)} \right) \\ \textbf{Bogoliubov transformation} \\ \text{coefficients:} \\ \text{from sublattice to collective modes} \\ K &= \frac{K_{-}}{K_{+}} \approx 0.01 \quad \frac{{\rm MnF}_2}{{\rm FeF}_2} \end{aligned}$$

characterizes magneto-optical asymmetry between sublattices

 ω_{\parallel}

Bogoliubov Factor

Two-magnon processes?

- So far we have used one-magnon Fleury-Loudon processes
- In AFMs, two-magnon processes are usually dominant

$$\hat{H}_{\text{int}} = \sum_{\mu,\nu,\mathbf{R}} E_1^{\mu} E_2^{\nu} \chi^{\mu\nu}(\mathbf{R})$$

$$\chi^{\mu\nu}(\mathbf{R}) = \sum_{\gamma} K_{\mu\nu\gamma}(\mathbf{R}) S^{\gamma}_{\mathbf{R}} + \sum_{\gamma,\delta} G_{\mu\nu\gamma\delta}(\mathbf{R}) S^{\gamma}_{\mathbf{R}} S^{\delta}_{\mathbf{R}} + \left[\sum_{\gamma,\delta,\mathbf{r}} L_{\mu\nu\gamma\delta}(\mathbf{R},\mathbf{r}) S^{\gamma}_{\mathbf{R}} S^{\delta}_{\mathbf{R}+\mathbf{r}}\right]$$

$$\boldsymbol{\Xi}_{\lambda_1\lambda_2}^{\alpha\beta} = \left(\hat{\mathbf{e}}_{\lambda_1}^*\right)^{\alpha} \hat{\mathbf{e}}_{\lambda_2}^{\beta} + \left(\hat{\mathbf{e}}_{\lambda_1}^*\right)^{\beta} \hat{\mathbf{e}}_{\lambda_2}^{\alpha}$$

$$\begin{bmatrix} \hat{\mu}_{R} \end{bmatrix}_{\lambda_{1}\lambda_{2}} = \frac{\hbar S}{2\epsilon_{0}V}C\sum_{\mathbf{k}}\sum_{\omega_{1},\omega_{2}}\sqrt{\omega_{1}\omega_{2}}\left\{ \hat{c}_{1}^{\dagger}\hat{c}_{2}\Xi_{\lambda_{1}\lambda_{2}}^{xy} + \hat{c}_{1}\hat{c}_{2}^{\dagger}\left[\Xi_{\lambda_{1}\lambda_{2}}^{xy}\right]^{*}\right\} \times \\ \times \left\{ 2u_{\mathbf{k}}v_{\mathbf{k}}\left(\hat{\alpha}_{\mathbf{k}}^{\dagger}\hat{\alpha}_{\mathbf{k}} + \hat{\beta}_{-\mathbf{k}}^{\dagger}\hat{\beta}_{-\mathbf{k}} + 1\right) + \left(u_{\mathbf{k}}^{2} + v_{\mathbf{k}}^{2}\right)\left(\hat{\alpha}_{\mathbf{k}}\hat{\beta}_{-\mathbf{k}} + \hat{\alpha}_{\mathbf{k}}^{\dagger}\hat{\beta}_{-\mathbf{k}}^{\dagger}\right)\right\}$$

magnon pairs

Two-magnon processes + cavity?

$$\begin{aligned} \mathbf{\Xi}_{\lambda_{1}\lambda_{2}}^{\alpha\beta} &= \left(\hat{\mathbf{e}}_{\lambda_{1}}^{*}\right)^{\alpha} \hat{\mathbf{e}}_{\lambda_{2}}^{\beta} + \left(\hat{\mathbf{e}}_{\lambda_{1}}^{*}\right)^{\beta} \hat{\mathbf{e}}_{\lambda_{2}}^{\alpha} \\ & \text{polarization dependence} \\ \left[\hat{\mathcal{H}}_{R}\right]_{\lambda_{1}\lambda_{2}} &= \frac{\hbar S}{2\epsilon_{0}V} C \sum_{\mathbf{k}} \sum_{\omega_{1},\omega_{2}} \sqrt{\omega_{1}\omega_{2}} \left\{ \hat{c}_{1}^{\dagger}\hat{c}_{2} \mathbf{\Xi}_{\lambda_{1}\lambda_{2}}^{xy} + \hat{c}_{1}\hat{c}_{2}^{\dagger} \left[\mathbf{\Xi}_{\lambda_{1}\lambda_{2}}^{xy} \right]^{*} \right\} \times \\ & \times \left\{ 2u_{\mathbf{k}}v_{\mathbf{k}} \left(\hat{\alpha}_{\mathbf{k}}^{\dagger}\hat{\alpha}_{\mathbf{k}} + \hat{\beta}_{-\mathbf{k}}^{\dagger}\hat{\beta}_{-\mathbf{k}} + 1 \right) + \left(u_{\mathbf{k}}^{2} + v_{\mathbf{k}}^{2} \right) \left(\hat{\alpha}_{\mathbf{k}}\hat{\beta}_{-\mathbf{k}} + \hat{\alpha}_{\mathbf{k}}^{\dagger}\hat{\beta}_{-\mathbf{k}}^{\dagger} \right) \right\} \end{aligned}$$

magnon pairs

Coming soon!

All-Optical Generation of Antiferromagnetic Magnon Currents via the Magnon Circular Photogalvanic Effect

E.V. Böstrom, T.S. Parvini, J.W. McIver, A. Rubio, SVK, M.A. Sentef, arXiv:2104.10914 (2021)

MAX PLANCK INSTITUTE FOR THE SCIENCE OF LIGHT

Vorsitzender des Promotionsausschusse

Magnon circular photogalvanic effect in 2D AFMs

- Directed magnon currents via stimulated two-magnon Raman scattering
- Current controlled by polarization and angle of incidence of light
- Measurable by Inverse Spin Hall Effect

E.V. Böstrom, T.S. Parvini, J.W. McIver, A. Rubio, SVK, M.A. Sentef, arXiv:2104.10914 (2021)

Outlook

•

- Cavity-induced dynamical effects can be cast in the form of a LLG equation of motion for the spin with effective magnetic fields and optically induced "Gilbert" damping
 - Design of optomagnonic systems in the optical regime shows promise

for improved coupling values

AFMs can present rich new physics: tunable optomagnonic coupling, dark-to-bright transition, cavity-induce magnon interaction

All-optical generation of magnon currents in 2D by stimulated Raman scattering (2-magnon processes)