### Collective dynamics of coexisting spin textures: the antiferromagnetic switching of FexNbS2

Eran Maniv, Nityan Nair, Shannon Haley Shan Wu, Robert Birgeneau Caolan John, Spencer Doyle Yaroslav Tserkovnyak James G. Analytis



GORDON AND BETTY MOORE FOUNDATION













### Intercalated TMDs - M<sub>x</sub>NbS<sub>2</sub>



Layered 2H-NbS<sub>2</sub> Centrosymmetric at 1/4 filling Becomes chiral at 1/3 filling

| 1<br>Hydrogen<br>1.006                              |                                                                                        | Pe                                                                                                                                                                                                                                                                                                                                                                                                                            | eriodic Ta                                                                                      | ble of th                                                                                                                                                                  | e Eleme                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nts                                                                                  |                                                      |                                                         |                                                           |                                                              | 2<br><b>He</b><br>Helium<br>41:003 |
|-----------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|------------------------------------|
| 3<br>Li<br>Lithium<br>6.941<br>9.012                |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5<br>B<br>Boron<br>10.811                                                            | 6<br>C<br>Carbon<br>12.011                           | 7<br>N<br>Nitrögen<br>14.007                            | 8<br>O<br>Oxygen<br>15.999                                | 9. 1<br>F<br>Fluorine 1<br>18.998 2                          | 10<br>Ne<br>20.180                 |
| 11<br>Na<br>Sodium<br>22.990<br>Magaesium<br>24.305 |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aluminum<br>26.982                                                                   | I4<br>Silicon<br>28.086                              | 15<br>P<br>Phosphorus<br>30.974                         | 16<br>S<br>Sulfur<br>32.066                               | 17<br>Chiprine<br>35.453                                     | 18<br>Ar<br>Argon<br>39.948        |
| 19<br>K<br>Pytessium<br>39.098                      | 21<br>SC<br>Scandium<br>44,956<br>22<br>Ti<br>Ti<br>Tranium<br>47.88                   | 23<br>V<br>Vanadium<br>50.942<br>24<br>Cr<br>Cr<br>Cr<br>S1.996                                                                                                                                                                                                                                                                                                                                                               | 25<br>Mn Fe<br>Mnganaee<br>54.938                                                               | 27<br>CO<br>Cobalt<br>58.933<br>28<br>Nickel<br>58.693                                                                                                                     | 29<br>Cu Zn<br>53.546<br>5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gallium<br>69.732                                                                    | 32<br>Gee<br>Germanhum<br>72.61                      | 33<br>Assenic<br>74.992                                 | 34<br>Seleníum<br>78.09                                   | 35<br>Br<br>Bromiñe<br>79.904                                | 36<br>Kr<br>Krypton<br>84,80       |
| 37<br><b>Rb</b><br>Rubidium<br>84.468 87.62         | 39<br>Y.<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19 | 41<br><b>Nb</b><br>Nicbium<br>92,906<br>42<br><b>Molybdenum</b><br>95,94                                                                                                                                                                                                                                                                                                                                                      | 43<br><b>TC</b><br>Technetium<br>98,907<br>101.02                                               | 45<br>Rh<br>Rhodium<br>102.906<br>106.42                                                                                                                                   | 47<br>Ag<br>Silver<br>107.868<br>112.411                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49<br>In<br>Indium<br>114.818                                                        | 50<br>Sn<br>118.71                                   | Sb<br>Antimony<br>121.760                               | 52<br>Te<br>Tellurium<br>127.6                            | 53<br>I<br>Iedine<br>126:904                                 | 54<br>Xe<br>Kenon<br>131:29        |
| 55<br>Cs<br>Ba<br>Barlum<br>132,905<br>137,327      | 57-71 72<br>Hf<br>Hafnitum<br>178.49                                                   | 73<br>Ta<br>Tatalum<br>180.948<br>183.95                                                                                                                                                                                                                                                                                                                                                                                      | 75<br>Re 05<br>Rhenium<br>196,207                                                               | 77<br><b>Ir</b><br>Indum<br>192.22<br>195.08                                                                                                                               | 79<br>Au<br>Gold<br>196.967<br>200.59                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 81<br>TI<br>Thallium<br>204,383                                                      | 82<br>Pb                                             | 83<br>Bi<br>Bismuth<br>208,980                          | 84<br>PO<br>Polonium<br>[208.982]                         | Astatine                                                     | B6<br>Rn<br>Radon<br>222,018       |
| 87 88<br>Fr Ra<br>Francium 223 020 226 025          | 104<br>89-103<br>Rdf<br>Rutherfordiar<br>[261]                                         | 105<br>Db<br>Dubnium<br>(262)<br>106<br>Seaborgium<br>(266)                                                                                                                                                                                                                                                                                                                                                                   | 107<br>Bh HS<br>Bohrium Hassium<br>(264)                                                        | 109:<br>Mt Ds<br>Metnerium<br>12681:<br>12681:                                                                                                                             | 111<br>Rg<br>Roentgenium<br>[272]                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n Untrium                                                                            | 114<br>Fl<br>Pierovium<br>[289]                      | Ununpentium                                             | 116<br>LV<br>Livermorium<br>[298]                         | Uunseptium                                                   |                                    |
|                                                     | 57<br>Lamayer<br>138.906<br>89<br>AC<br>271.028<br>90<br>Tr<br>232<br>233              | 59         Pr         60           0.115         91         92           7h         Pacadition         92           Pacadition         92         92           231.036         238.036         238.036 | d Pmm<br>24<br>23<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29 | 63<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>65<br>95<br>96<br>95<br>96<br>95<br>96<br>95<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>96 | id (55<br>Martin 159 925<br>m Bk (747 070)<br>159 925<br>11<br>159 925<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>1 | 5<br>Dy<br>167<br>164<br>164<br>164<br>164<br>164<br>164<br>164<br>164<br>164<br>164 | 0<br>930<br>167.2<br>100<br>S<br>110<br>Frn<br>257.0 | 69<br>Thritium<br>6<br>168.9<br>101<br>Mentele<br>258.1 | 70<br>Ytterbi<br>34<br>102<br>Mobeliu<br>Nobeliu<br>259.1 | 71<br>Liutetum<br>174.96<br>103<br>Lawrence,<br>101<br>[262] | 7                                  |

### Intercalated TMDs -Fe<sub>x</sub>NbS<sub>2</sub>



Layered 2H-NbS<sub>2</sub> Centrosymmetric at 1/4 filling Becomes chiral at 1/3 filling



Triangular prism coordination of Nb Octahedral coordination of Fe



1/3 structure has a triangular lattice of Fe

### Magnetic structure

PHILOSOPHICAL MAGAZINE B, 1980, VOL. 41, No. 1, 65-93

JOURNAL OF SOLID STATE CHEMISTRY 3, 154–160 (1971)

#### 3d transition-metal intercalates of the niobium and tantalum dichalcogenides

I. Magnetic properties

By S. S. P. PARKIN and R. H. FRIEND Cavendish Laboratory, Madingley Road, Cambridge, England

Fig. 3



Magnetic susceptibility of a single crystal of  $Fe_{0.33}NbS_2$  versus temperature. Black squares :  $X \perp c$  axis. Open circles :  $X \parallel c$  axis.

Magnetic and Crystallographic Structures of MexNbS2 and MexTaS2

B. VAN LAAR, H. M. RIETVELD Reactor Centrum Nederland, Petten, The Netherlands

Wurtzite



# Aside: What is an antiferromagnetic switch?



In the presence of spin orbit coupling and broken inversion symmetry, an applied current can attain a partial spin polarization due to the Edelstein/Spin Hall effect

## Landau-Lifshitz-Gilbert $d\mathbf{M}/dt = -\gamma_0 \mathbf{M} \times \mathbf{H}_{eff} + \frac{\alpha}{M_s} \mathbf{M} \times d\mathbf{M}/dt$





## What is an antiferromagnetic switch?



CuMnAs (Wadley et al. Science 2016)

## What is an antiferromagnetic switch?



V<sub>PHE</sub><sup>-</sup>

0

200

400

600

800

No. of current pulse trains

1000

1200 1400 1600

## Domain boundary motion moves an average *l*



## What is an antiferromagnetic switch?



Chiang et al. Phys. Rev. Lett. 123, 227203

### Antiferromagnetic Switching in Fe<sub>1/3-δ</sub>NbS<sub>2</sub>



Nair, Maniv, JGA Nature Materials 2020

### Antiferromagnetic Switching in Fe<sub>1/3-δ</sub>NbS<sub>2</sub>





## Extremely low current densities and pulse durations



## Domain boundary motion moves an average *l*

Applied magnetic fields can achieve the same result

#### Anisotropic MagnetoResistance & switching in Fe<sub>1/3+δ</sub>NbS<sub>2</sub>



#### <u>Zero-Field</u> Anisotropic MagnetoResistance & switching in Fe<sub>1/3+δ</sub>NbS<sub>2</sub>



#### <u>Zero-Field</u> Anisotropic MagnetoResistance & switching in Fe<sub>1/3+δ</sub>NbS<sub>2</sub>



This provides evidence that the AFM switching follows the AFM order parameter.

Or does it?

Nair, Maniv, JGA Nature Materials 2020

## Collective dynamics of the coexisting spin glass



Eran Maniv, Shannon Haley

## Sample "improvements"





#### Eran Maniv, Shannon Haley

## Sample "improvements"



## Sample "improvements"





The presence of the spin glass is essential in facilitating the switching

## AFM Switching and AMR



The AMR is completely indifferent to the presence of the spin glass, and the is no change of sign.

Maniv, JGA Science Advances 2020



## Collective dynamics of a correlated spin glass



Glassy spin textures form hydrodynamic modes that are locked in phase

Ochoa & Tserkovnyak, PHYSICAL REVIEW B 98, 054424 (2018) Halperin and Saslow, Physical Review Letter (1977)

### Coexisting orders

### Anomalous Switching

С

Vacancies

Interstitials



b





Maniv, JGA Science Advances 2020

### Anomalous switching



### Anomalous Switching



## Nearly degenerate magnetic orders



## Evolution of the magnetic structure



## Anomalous current dependence



### Summary

- Collective spin-glass dynamic appears to facilitate the better spin transport into the AFM.
- Nearly order degenerate order parameters lead to highly tunable switching with unusual current/pulse width dependence.
- Lots of open questions remain. For example, the magnetic order is entirely in-plane, why is there single pulse saturation?







#### GORDON AND BETTY **NOORE** FOUNDATION

