# Spin transport in a conventional superconductor

Chiara Ciccarelli, University of Cambridge



#### K.R. Jeon, J.W.A. Robinson, M. Blamire



H. Kurebayashi



#### L.F. Cohen



X. Montiel, M. Eschrig



## Spin transport BELOW the superconducting gap



## Spin transport ABOVE the superconducting gap





PRL 109, 207001 (2012) Nature Physics 9, 84 (2013)

#### We measure spin-pumping in a superconductor

#### Layout 1

|    | Cu (5 nm) |
|----|-----------|
|    | Nb (t nm) |
|    | Py (6 nm) |
|    | Nb (t nm) |
| Qu | arz       |



#### We measure spin-pumping in a superconductor



## We estimate the spin through Nb from the FMR linewidth



#### Layout 1 Cu (5 nm) Nb (t nm)

Nb (t nm)

Py (6 nm)

Quarz



Nature Materials 17, 499 (2018)









Phys. Rev. Lett. 100, 047002 (2008)









#### Layout 1







## An unusual behavior is observed in the presence of Pt



Layout 2

|    | Cu (5 nm) |
|----|-----------|
|    | Pt (5 nm) |
|    | Nb (t nm) |
|    | Py (6 nm) |
|    | Nb (t nm) |
|    | Pt (5 nm) |
| lu | arz       |

(

Nature Materials 17, 499 (2018)

## An unusual behavior is observed in the presence of Pt



Layout 2

|    | Cu (5 nm) |
|----|-----------|
|    | Pt (5 nm) |
|    | Nb (t nm) |
|    | Py (6 nm) |
|    | Nb (t nm) |
|    | Pt (5 nm) |
| Qu | arz       |

Layout 1



Nature Materials 17, 499 (2018)

## Meissner screening



### Meissner screening



## An unusual behavior is observed in the presence of Pt



#### We substitute Pt with different metals



### We substitute Pt with different metals



#### **Quasiparticles-mediated spin-transfer**



Nature Phys. 12, 57 (2015) Nature Phys. 9, 84 (2013)





# The role of Cooper pairs in mediating spin transport in Nb

Nature Physics 11, 307(2015)



### The Long-range triplet condensate



### The Long-range triplet condensate



## The role of Cooper pairs in mediating spin transport in Nb



Montiel, Eschrig, Phys. Rev. B 98, 104513 (2018) PRB 89, 134517 (2014)

#### Pt, Ta, W have two characteristics:

- Spin-orbit coupled
- Close to a paramagnetic instability



#### Dependence with the SC thickness



## The role of the exchange in Pt



## The role of the exchange in Pt



#### Abrikosov vortex nucleation in an OP field

#### Phys. Rev. B 99, 144503 (2019)



PRB 89, 134517 (2014)





### Abrikosov vortex nucleation in an OP field



## Angular dependence is in agreement with Rashba SOC



## Angular dependence is in agreement with Rashba SOC



100

## Tunable spin-wave propagation by the triplet CPs



Phys. Rev. X 10, 031020 (2020)

## Tunable spin-wave propagation by the triplet CPs



- Pure spin is efficiently pumped in superconducting Nb when it is interfaced by a heavy metal
  - The spin pumping efficiency is increased when the Pt internal exchange field is increased by proximity to a ferromagnet
- The angular dependence of the effect points towards Rashba SOC for generating long-range equal spin states

Nature Materials **17**, 499 (2018) Phys. Rev. Appl., **11**, 014061 (2019) Phys. Rev. B **99**, 024507 (2019) Phys. Rev. X 10, 031020 (2020) Phys. Rev. B 99, 144503 (2019)



Phys. Rev. X 10, 031020 (2020)