Electrical manipulation of non-collinear antiferromagnet

Shunsuke Fukami¹⁻⁵

[collaborators]

Y. Takeuchi, Y. Yamane, J.-Y. Yoon, R. Itoh, B. Jinnai, S. Kanai, S. DuttaGupta, J. Ieda, H. Ohno

- 1. Laboratory for Nanoelectronics and Spintronics, RIEC, Tohoku Univ.
- 2. WPI-Advanced Institute for Materials Research, Tohoku Univ.
- 3. Center for Spintronics Research Network, Tohoku Univ.
- 4. Center for Science and Innovation in Spintronics, Tohoku Univ.
- 5. Center for Innovative Integrated Electronic Systems, Tohoku Univ.

A portion of this work has been supported by the R&D Project for ICT Key Technology of MEXT, ImPACT Program of CSTI, JST-CREST JPMJCR19K3, JSPS Kakenhi 17H06093 and 19H05622.

1. Introduction

- Electrical manipulation of magnetic materials
- Non-collinear antiferromagnet
- 2. Chiral-spin rotation of non-collinear antiferromagnet Mn₃Sn
 - Preparation of epitaxial thin film
 - Chiral-spin rotation
 - Analysis of domain size
 - Mn₃Sn thickness dependence
- 3. Summary

Electrical manipulation of magnetic materials

Magnetization reversal

Magnetic-phase transition

D. Chiba *et al.*, Science **301**, 943 (2003).
D. Chiba *et al.*, Nature **455**, 515 (2008).

M. Weisheit et al., Science **315**, 349 (2008).

• Dynamical switching

Y. Shiota *et al.*, NMAT **11**, 39 (2012). S. Kanai *et al.*, APL **101**, 122403 (2012).

Oscillation/Resonance

 Phase locking (synchronization)

S. Kaka *et al.*, Nature **437**, 389 (2005).

Neuromorphic computing

M. Romera et al., Nature **563**, 230 (2018).

M. Zahedinejad et al., NNANO 15, 47 (2020).

• Communication, harvesting

Electrical manipulation of magnetic materials

Néel-vector rotation

SPICE-SPIN+X Seminars "Electrical manipulation of non-collinear antiferromagnet" Shunsuke Fukami (Tohoku Univ.)

Electrical manipulation of magnetic materials

Non-collinear antiferromagnets

Behaves like ferromagnet despite negligible magnetization

Experiment

Large anomalous Hall effect due to non-vanishing Berry curvature

SPICE-SPIN+X Seminars "Electrical manipulation of non-collinear antiferromagnet" Shunsuke Fukami (Tohoku Univ.)

ANE, MOKE

Magneto-Optical Kerr Effect (MOKE)

Anomalous Nernst Effect (ANE)

SPICE-SPIN+X Seminars "Electrical manipulation of non-collinear antiferromagnet" Shunsuke Fukami (Tohoku Univ.)

0.2

Chiral-spin reversal

H. Tsai et al., Nature **580**, 608 (2020).

Same protocol as SOT-induced magnetization switching

Any characteristic phenomena in NC-AFM?

Chiral-spin rotation – characteristic phenomenon in NC-AFM

LOW TEMPERATURE PHYSICS

VOLUME 41, NUMBER 9

CrossMark

SEPTEMBER 2015

Using generalized Landau-Lifshitz equations to describe the dynamics of multi-sublattice antiferromagnets induced by spin-polarized current

O. V. Gomonay^{a)}

National Technical University of Ukraine "KPI," 37 Peremogy Ave., Kiev 03056, Ukraine

V. M. Loktev

National Technical University of Ukraine "KPI," 37 Peremogy Ave., Kiev 03056, Ukraine and Bogolyubov Institute for Theoretical Physics, NASU, 14b Metrologicheskaya St., Kiev 03680, Ukraine (Submitted May 8, 2015) Fiz. Nizk. Temp. **41**, 898–907 (September 2015)

Antiferromagnets (AFM) with a zero, or very small macroscopic magnetization, are promising materials in spintronics. Based on generalized Landau-Lifshitz equations, we examine the magnetic dynamics of three-sublattice AFM in the presence of a spin-polarized current, and in particular, the switching processes between different equilibrium states. We found the conditions for effective switching by pulsed and DC, as well as by an external magnetic field. We examined the features of stationary dynamic states, caused by the current. The obtained results can be used to develop high-speed elements of AFM-based memory materials. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4931648]

 $L1_2$ -Mn₃Ir

O. V. Gomonay and V. M. Loktev, Low Temp Phys. 41, 698 (2015).

or to simultaneously turn on the current and the magnetic field. Indeed, as seen on the phase diagram of the system with current-field variables (Fig. 5), it is possible to isolate three specific ranges of parameters, in which (i): there are two points of stable equilibrium; (ii) only one point of rest is stable; (iii) there are no points of rest, but as we will see below, there exist stationary states in which the AFM vectors rotate in the plane (111). The lines separating these regions are defined by

$$\frac{j_s}{j_0^{\text{cr2}}} = \left(\frac{3H}{2H_{\text{cr}}} \pm \sqrt{2 + \left(\frac{H}{2H_{\text{cr}}}\right)^2}\right)$$
$$\times \sqrt{\frac{1}{2} - 2\left(\frac{H}{4H_{\text{cr}}}\right)^2 \pm 2\frac{H}{4H_{\text{cr}}}\sqrt{\frac{1}{2} + \left(\frac{H}{4H_{\text{cr}}}\right)^2},\quad(30)$$

FIG. 5. The state diagram with field-current density variables. Equilibrium states 1 and 2 are differentiated by a rotation of 180° in the (111) plane, depicted by arrows. Circles denote the area of steady state precession in its direction.

Electrical manipulation of magnetic materials

1. Introduction

- Electrical manipulation of magnetic materials
- Non-collinear antiferromagnet
- 2. Chiral-spin rotation of non-collinear antiferromagnet Mn₃Sn
 - Preparation of epitaxial thin film
 - Chiral-spin rotation
 - Analysis of domain size
 - Mn₃Sn thickness dependence
- 3. Summary

Objectives

- (Indirect) observation of chiral-spin rotation
- Comparison with chiral-spin reversal
- Effect of multidomain structure
- Thickness dependence

RIEC

1. Introduction

- Electrical manipulation of magnetic materials
- Non-collinear antiferromagnet
- 2. Chiral-spin rotation of non-collinear antiferromagnet Mn₃Sn
 - Preparation of epitaxial thin film
 - Chiral-spin rotation
 - Analysis of domain size
 - Mn₃Sn thickness dependence
- 3. Summary

Stack deposition and characterization

Deposition temperature : 400 °C Post annealing temperature : 500 °C

- Crystal structure analysis
 - > XRD
 - " 2θ - θ " : Indicating out-of-plane lattice structure
 - " ϕ scan" : Indicating in-plane lattice structure

- *m H*_{⊥(//)}
 ≻ VSM (out, in-plane)
- $R_{\rm H}(\rho_{\rm H})$ $H_{\rm L}$ > PPMS

 $R_{\rm H}$: Hall resistance $ho_{\rm H}$: Hall resistivity

J. Yoon et al., Appl. Phys. Express 13, 013001 (2020).

Structural characterization by XRD

Stack structure

Ru (1 nm)

MgO

 Mn_3Sn (50 nm)

Ta (t_{Ta})

W (10 nm)

MgO(110) sub.

Mn₃Sn(2200

the order have realized and relationship

40

۸n₃Sn(3<u>3</u>00

50

60

 2θ (deg.)

20

30

units)

Intensity (arb.

_____Sn(111

• XRD (Φ scan)

 $t_{Ta} = 1 \text{ nm}$

units)

(arb.

Intensity

0

• W underlayer is suitable to form M-plane-oriented Mn₃Sn.

60

120

180

 ϕ (deg.)

- Insertion of Ta prevents the formation of WMn₂Sn.
- Epitaxial relationship:

70

80

90

100

- MgO(110)[001] II W(211)[01 $\overline{1}$] II Mn₃Sn(1 $\overline{1}$ 00)[0001]

J.-Y. Yoon et al., Appl. Phys. Express 13, 013001 (2020).

TEM observation of M-plane sample

<mark>a</mark> ≈ 5.6 Å	O · Mn
<mark>b</mark> ≈ 5.6 Å	
<mark>c</mark> ≈5.6 Å	0.50

SPICE-SPIN+X Seminars "Electrical manipulation of non-collinear antiferromagnet" Shunsuke Fukami (Tohoku Univ.)

RIEC

Magnetic and magneto-transport properties

- Small residual magnetization ~ 5 mT
- Large anomalous Hall conductivity ~ 13 Ω⁻¹cm⁻¹
 @ high-temperature annealing

J.-Y. Yoon et al., Appl. Phys. Express **13**, 013001 (2020) J.-Y. Yoon et al., AIP Adv. **11**, 065318 (2021).

1. Introduction

- Electrical manipulation of magnetic materials
- Non-collinear antiferromagnet
- 2. Chiral-spin rotation of non-collinear antiferromagnet Mn₃Sn
 - Preparation of epitaxial thin film
 - Chiral-spin rotation
 - Analysis of domain size
 - Mn₃Sn thickness dependence
- 3. Summary

Sample structure and R_H-H loop

- t_{Mn3Sn}: 8.3 22.5 nm
- Sandwiched by Pt and W/Ta
 → Enhanced SOT
- MgO-capped sample is prepared as a reference.

- W_{ch}: 3 − 50 μm
 → Estimation of domain size (presented later)
- *L*_{ch}: 50 μm
- *W*_{probe}: 3 μm

- Negative R_H -H loop \rightarrow AHE due to chiral-spin structure
- Square hysteresis even at $t_{Mn3Sn} = 8.3$ nm

Y. Takeuchi et al., Nat. Mater. (2021) doi.org/10.1038/s41563-021-01005-3

RIEC

Configurations

- $\cdot R_{\rm H}$ transits to intermediate level regardless of directions of initialization and current.
- Threshold current is largely different between the two configurations.
- Fluctuation level is largely different below and above the threshold current.

 $J_{\rm C}$ (MA cm⁻²)

Driving force

<u>*R*_H-*H* curve under various *I*</u>

 $I_{\rm DC} = 1.00 \, {\rm mA}$

 $I_{\rm DC} = 1.50 \, {\rm mA}$

 $\mu_0 H (mT)$

<u>Mn₃Sn(12.0) / MgO(1.3) / Ru(1)</u>

-5 0 5

I_{DC} (mA)

10 15 20

 $J_{\rm HM}$ (MA cm⁻²)

-30 -20 -10 0 10 20 30

Current density, J_{HM} (MAcm⁻²) 10 20 30 0 (C) ²⁸⁰ ප් 275 ŝ Temperatu resistance, 213 100 80 Estimated Channel r 592 40 260 25 0 5 10 15 20 30 DC current, / (mA) Joule heating plays a negligible role. $(\Delta T < 11 \, {}^{\circ}\text{C})$

Joule heating

Pt-capped sample shows smaller $I_{\rm C}$ and $J_{\rm C}$.

 $H_{\rm C}$ linearly decreases with I. \succ

3

2

2

3

300

200 200 100 *H*^c (mT) *H*^o-100

[∞] -200

-300

-20 -15 -10

SOT plays a dominant contribution.

Possible scenario

- **1.** Chiral-spin structure starts with uniform state by initialization.
- 2. Hall cross consists of multiple domains.
- 3. Chiral-spin structure in each domain starts rotating above $I_{\rm C}$.
- 4. When *I* is turned off, each domain settles into one of the six stable points.
- 5. $R_{\rm H}$ is observed as an average of each domain.

Chiral-spin LLG simulation

$$\frac{\partial \boldsymbol{m}_{\mu}}{\partial t} = -\gamma \boldsymbol{m}_{\mu} \times \boldsymbol{H}_{\mu} + \alpha \boldsymbol{m}_{\mu} \times \frac{\partial \boldsymbol{m}_{\mu}}{\partial t} - \frac{\gamma \hbar \theta_{\text{SH}} J}{2 e M_{S} d} \boldsymbol{m}_{\mu} \times (\boldsymbol{m}_{\mu} \times \boldsymbol{s})$$
$$\mu = A, B, C$$
$$\boldsymbol{H}_{\mu} = -\frac{1}{M_{\text{S}}} \frac{\partial u}{\partial \boldsymbol{m}_{\mu}}$$

• *d* = 10 nm

$$u = J_0 \sum_{\langle \mu \nu \rangle} \boldsymbol{m}_{\mu} \cdot \boldsymbol{m}_{\nu} + D\boldsymbol{e}_z \sum_{\langle \mu \nu \rangle} \boldsymbol{m}_{\mu} \times \boldsymbol{m}_{\nu} - K \sum_{\mu = A, B, C} (\boldsymbol{m}_{\mu} \cdot \boldsymbol{e}_{K, \mu})^2$$

$$\begin{pmatrix} \boldsymbol{e}_{K,A} = (-\boldsymbol{e}_x + \sqrt{3}\boldsymbol{e}_y)/2 \\ \boldsymbol{e}_{K,B} = -(\boldsymbol{e}_x + \sqrt{3}\boldsymbol{e}_y)/2 \\ \boldsymbol{e}_{K,C} = \boldsymbol{e}_x \end{pmatrix}$$

$$H = 6 \text{ mT}$$

$$M = 6 \text{ mT}$$

$$M = 6 \text{ mT}$$

$$\boldsymbol{e}_{K,C} = \boldsymbol{e}_x$$

Y. Yamane, O. Gomonay, J. Sinova, Phys. Rev. B **100**, 054415 (2019).

Calculation results

Rotation vs. Reversal (Tsai et al. 2020)

Y. Takeuchi et al., Nat. Mater. (2021) doi.org/10.1038/s41563-021-01005-3

SPICE-SPIN+X Seminars "Electrical manipulation of non-collinear antiferromagnet" Shunsuke Fukami (Tohoku Univ.)

1. Introduction

- Electrical manipulation of magnetic materials
- Non-collinear antiferromagnet
- 2. Chiral-spin rotation of non-collinear antiferromagnet Mn₃Sn
 - Preparation of epitaxial thin film
 - Chiral-spin rotation
 - Analysis of domain size
 - Mn₃Sn thickness dependence
- 3. Summary

Quantification of domain size – concept

Fluctuation level → Mean domain size

Quantification of domain size – result

Good agreement with a scale suggested from W-dependent H_c.

H. Bai et al., Appl. Phys. Lett. **117**, 052404 (2020).

1. Introduction

- Electrical manipulation of magnetic materials
- Non-collinear antiferromagnet
- 2. Chiral-spin rotation of non-collinear antiferromagnet Mn₃Sn
 - Preparation of epitaxial thin film
 - Chiral-spin rotation
 - Analysis of domain size
 - Mn₃Sn thickness dependence
- 3. Summary

Spin torque on AFM

а

SiO₂

mature

ARTICLES https://doi.org/10.1038/s41563-018-0236-9

Long spin coherence length and bulk-like spin-orbit torque in ferrimagnetic multilayers

Jiawei Yu¹, Do Bang^{2,3,8}, Rahul Mishra^{1,8}, Rajagopalan Ramaswamy¹, Jung Hyun Oh⁴, Hyeon-Jong Park⁵, Yunboo Jeong[®]⁶, Pham Van Thach^{2,3}, Dong-Kyu Lee⁴, Gyungchoon Go⁴, Seo-Won Lee⁴, Yi Wang[®]¹, Shuyuan Shi¹, Xuepeng Qiu[®]⁷, Hiroyuki Awano², Kyung-Jin Lee^{® 4,5,6*} and Hyunsoo Yang[®]^{1*}

- FM: $k_{\rm F}^{\uparrow} \neq k_{\rm F}^{\downarrow} \rightarrow$ Surface torque
- AFM: $k_{\rm F}^{\uparrow} = k_{\rm F}^{\downarrow} \rightarrow$ Bulk-like torque

J. Yu *et al.*, NMAT **18**, 29 (2019).

- Switching efficiency
 - Ferri: Large and increases with t up to 8 nm
 - Ferro: Small and decreases with t

Pt

Switching efficiency vs. t_{Mn3Sn}

- Follows 1/t relation.
- Larger than FM and collinear ferrimagnet.

i. Field-driven dynamics

- Out-of-kagome-plane anisotropy
- Small net magnetization

ii. Current-driven dynamics

In-kagome-plane anisotropy

1. Introduction

- Electrical manipulation of magnetic materials
- Non-collinear antiferromagnet
- 2. Chiral-spin rotation of non-collinear antiferromagnet Mn₃Sn
 - Preparation of epitaxial thin film
 - Chiral-spin rotation
 - Analysis of domain size
 - Mn₃Sn thickness dependence
- 3. Summary

Summary

Epitaxial M-plane-oriented Mn₃Sn thin film

> Prepared on MgO(110) substrate with W/Ta buffer layer.

J.-Y. Yoon *et al.*, Appl. Phys. Express **13**, 013001 (2020). J.-Y. Yoon *et al.*, AIP Advances **11**, 065318 (2021).

Chiral-spin rotation

- > Transition and fluctuation of Hall resistance are observed above a threshold.
- > Threshold current depends on the Kagome-plane orientation.
- > Consistently explained by a **chiral-spin rotation** induced by SOT.
 - Chiral-spin rotation requires no field and smaller current, compared with reversal.
- > Domain size estimated as 240 nm from the fluctuation level vs. wire width.
- > Higher switching efficiency than collinear systems.

Y. Takeuchi, Y. Yamane, J.-Y. Yoon, R. Itoh, B. Jinnai, S. Kanai, J. Ieda, S. Fukami, and H. Ohno, "Chiral-spin rotation of non-collinear antiferromagnet by spin-orbit torque" Nature Materials (2021) doi.org/10.1038/s41563-021-01005-3.

SPICE-SPIN+X Seminars "Electrical manipulation of non-collinear antiferromagnet" Shunsuke Fukami (Tohoku Univ.)