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• Introduction to Artificial Spin Systems

• Microstate control

• ASVI - Artificial Spin System engineered for 
Vortex/Macrospin bistability

• Ratchet-like Macrospin to Vortex conversion 

• FMR signatures of Vortex & Macrospin modes

• Long-term training up to 60 field loops

• Targeted vortex writing via MFM tip

• Reservoir computation scheme

• Waveform transformations

• Chaotic time-series prediction

Reconfigurable Training and Reservoir Computing via 
Spin-Wave Fingerprinting in an Artificial Spin-Vortex Ice
Jack C. Gartside, Kilian D. Stenning, Alex Vanstone, Troy Dion, Holly H. Holder, 
Francesco Caravelli, Daan M. Arroo, Hidekazu Kurebayashi, Will R. Branford

2



What is an artificial spin system?

Dysprosium titanate
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What is an artificial spin system?

Dysprosium titanate Artificial Spin Ice – Nanopatterned analogue

Gartside et al – Nature Nanotechnology (2018)
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What is an artificial spin system?

Dysprosium titanate Artificial Spin Ice – Nanopatterned analogue

Shi et al – Nature Physics (2018)
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What is an artificial spin system?
Microstate control

• Great promise of huge 
microstate space

• Problem: How to access?
• Few states possible:
• Typically all macrospins

aligned by field
• Randomised/AC 

demagnetised
• Thermally annealed

Artificial Spin Ice – Nanopatterned analogue

Gartside et al – Nature Nanotechnology (2018)
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microstate space

• Problem: How to access?
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aligned by field
• Randomised/AC 
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Artificial Spin Ice – Thermally-annealed ground state

Morgan et al – Nature Physics (2010)
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Direction of tip motion

Microstate control
Developing a tip-based approach
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Microstate control
Developing a tip-based approach

Low-moment tip

High-moment tip

Low-moment tip

MFM data

(0.3e-13 emu, 320 Oe)

(3e-13 emu, 690 Oe)Tip-retraction 
point

(0.3e-13 emu, 320 Oe)

Gartside et al Scientific Reports (2016) 17



Microstate control
Developing a tip-based approach

+Q -Q+2Q-2Q
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Microstate control
Developing a tip-based approach

+Q -Q+2Q-2Q
attraction attraction
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Microstate control
Developing a tip-based approach

+Q-Q
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Microstate control
Developing a tip-based approach

Before 
HM scan

After 
HM scan

Injection scan

MFM Data Schematic
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Microstate control
Developing a tip-based approach

Before 
HM scan

After 
HM scan

MFM Data Schematic
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Microstate control
Developing a tip-based approach

2 µm

‘monopole’ chainsSingle ‘monopole’ defects

Gartside et al – Nature Nanotechnology (2018)
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Microstate control
Developing a tip-based approach

Ground state of kagome ASI

HSat
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Microstate control
Developing a tip-based approach

Ground state of kagome ASI
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Microstate control
Developing a tip-based approach

Ground state of kagome ASI

Flux-closure 
loops lower 
system energy
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Microstate control
Developing a tip-based approach

Before After

Gartside et al – Nature Nanotechnology (2018) 27



Break nanoelement symmetry Allows access to otherwise elusive states

Gartside et al – Nature Communications (2021)

Microstate control
A global-field approach
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Allows access to otherwise elusive states

Gartside et al – Nature Communications (2021)

Microstate control
A global-field approach

Hext

Hrf
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Explore magnonic properties of diverse states

Gartside et al – Nature Communications (2021)

Microstate control
A global-field approach
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Use elusive ‘Type 3’ ASI state to observe dipolar 
coupling induced spin-wave mode anti-crossing

Gartside et al – Nature Communications (2021)

Microstate control
A global-field approach

FMR experiment Simulation
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Wide bar macrospin

Thin bar
Magnetisation Simulated 

MFM
Experimental

MFM

Normal saturated ASI spectra

Microstate control – Beyond a single texture
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Wide bar macrospin

Thin bar

Spectra after 30 training cycles 
at 18 mT (wide bar Hc = 16 mT)

Thin bar

New Vortex mode

Wide bar macrospin
mode is gone

Magnetisation Simulated 
MFM

Experimental
MFM

Magnetisation Simulated 
MFM

Experimental
MFM

Normal saturated ASI spectra

Microstate control – Beyond a single texture
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Blue = Initial -200 mT saturated 
Red = After 30x 18 mT training loops

Saturated initial state Field-Trained stateVortex/Macrospin Energy 34



Simulating vortex formation

Saturated

Trained – Vortices in wide bars
Vortex formation time-series – MuMax3
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MFM Imaging of Vortex Training

36
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Micromagnetic simulation of FMR response

30 loops trained
New modes strong & clearly observed

Experiment Simulation
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Micromagnetic simulation of FMR response

30 loops trained
New modes strong & clearly observed

Simulated sweep of trained/vortex 
state shows new X modes
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Waterfall spectra taken after 
each training field loop

Macrospin & vortex mode 
amplitudes throughout 
training for different thin-
bar biasing
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Vortex to Macrospin Conversion
• Initial high-vortex state
• Sweep H 0-35 mT
• Reach saturated macrospin

state at 27 mT
• Thin bar biasing controls 

saturation field

Hc (vortex)Hc (macrospin)
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Top Frames (1-3): Tip-written vortices

Vortex Writing via MFM Tip
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Top Frames (1-3): Tip-written vortices

Bottom Frames (4-6): 
Field looping of vortex line states at 13 mT (Hc = 16-17 mT) 

Vortex Writing via MFM Tip

43



Training ASVI 
Higher field application after different training lengths

Echo-state property: 
System converges from different initial states 
when driven through same input sequence
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Reservoir Computation

• Aim: To map complex problems onto linearly-
solveable ones

• Reservoir has huge number of strongly-
interacting hidden connections

• Only need to train small number of outputs

• Strengths are temporal data prediction, 
transformation and classification

• Huge energy savings possible vs. deep neural 
networks as only train small subset of weights

• Energy cost of global Machine Learning 
doubling every 3.5 months (!) OpenAI white paper (2019)
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Reservoir Computation

Prerequisites for good reservoir computation:

✓Wide range of distinguishable states
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Reservoir Computation
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✓Wide range of distinguishable states
✓Highly-nonlinear response to input
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✓Short-term memory of input sequences
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property
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Reservoir Computation

Prerequisites for good reservoir computation:

✓Wide range of distinguishable states
✓Highly-nonlinear response to input
✓Strong inter-element coupling
✓Short-term memory of input sequences
✓Ability to gradually ‘forget’ – Echo-state 

property

ASVI appears to tick boxes well – Implement ASVI reservoir!
PhD student Kilian Stenning lead our implementation 50



Reservoir Computation with ASVI

Train outputs & PredictTrain outputs & PredictTrain on FMR data & Predict

1) 2)

3)
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Waveform transformation

• Input I(t) dataset as field-
sequence

• Transform output data to 
desired waveform y(t) via 
Ridge-Regression

• Unknown transformation 
relation, challenging 
benchmarking task

• Short 100 datapoint training 
to reflect real-world 
embedded device use cases
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Waveform transformation
• Hysteretic Non-Linear Transformation task

• y(t) = 0.4y(t−1)+0.4y(t−1)y(t−2)+0.613(t)

• Challenge of training to prior steps in addition to 
higher-order

• Function after Du et al, Nat Comms (2017)
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Time-Series Prediction

• Input training waveform as 
field-sequence

• Train on FMR output to 
predict future behaviour

• Employ chaotic oscillatory 
‘Mackey-Glass’ time series

• ASVI performs increasingly 
well vs. no reservoir case as 
prediction moves further 
into future

Train Test

Train Test
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Time-Series Prediction – Noise Tolerance

• Inject white noise to input 
signal

• ASVI retains good future 
prediction

Train Test

Sin(t) future prediction, t+10
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Conclusions & Future Work
• Designed & tested a new artificial spin system with controllable 

bistabile magnetic textures

• Exhibits ratchet-like macrospin-to-vortex training & emergent physical 
memory behaviour

• Rich spin-wave spectra with analogue-style mode amplitude tuning 
via training

• Tip-written vortices allow local control of training behaviour

• Potential as a new versatile platform for reconfigurable magnonics & 
neuromorphic computation

• Leverage Vortex-writing for directed reservoir computation

• Multiple nanoscale FMR pickups for reservoir scheme

58



Thanks & Acknowledgements
• Thanks to Prof. Karin Everschor-Sitte & Jake Love for reservoir 

discussions 

• Thanks again to all co-authors and collaborators:

• Kilian D. Stenning, Alex Vanstone, Troy Dion, Holly H. Holder, 
Francesco Caravelli, Daan M. Arroo, Hidekazu Kurebayashi, Will R. 
Branford

• In particular 
• Kilian Stenning – Reservoir scheme design & implementation

• Alex Vanstone – Establishing FMR readout of microstates

• Troy Dion – Simulation of spin-wave modes & spatial profiles

59


